Eigenvector statistics in non-Hermitian random matrix ensembles

被引:141
作者
Chalker, JT [1 ]
Mehlig, B [1 ]
机构
[1] Univ Oxford, Oxford OX1 3NP, England
关键词
D O I
10.1103/PhysRevLett.81.3367
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study statistical properties of the eigenvectors of non-Hermitian random matrices, concentrating on Ginibre's complex Gaussian ensemble, in which the real and imaginary parts of each element of an N x N matrix, J, are independent random variables. Calculating ensemble averages based on the quantity [L-alpha\L-beta] [R-beta\R-alpha] where [L-alpha\ and \R-beta] are left and right eigenvectors of J, we show for large N that eigenvectors associated with a pair of eigenvalues are highly correlated if the two eigenvalues lie close in the complex plane. We examine consequences of these correlations that are likely to be important in physical applications. [S0031-9007(98)07357-8].
引用
收藏
页码:3367 / 3370
页数:4
相关论文
共 20 条
[1]   STATISTICAL PROPERTIES OF PARAMETER-DEPENDENT CLASSICALLY CHAOTIC QUANTUM-SYSTEMS [J].
AUSTIN, EJ ;
WILKINSON, M .
NONLINEARITY, 1992, 5 (05) :1137-1150
[2]   Diffusion in a random velocity field: Spectral properties of a non-hermitian Fokker-Planck operator [J].
Chalker, JT ;
Wang, ZJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1797-1800
[3]   Directed quantum chaos [J].
Efetov, KB .
PHYSICAL REVIEW LETTERS, 1997, 79 (03) :491-494
[4]  
Farrell BF, 1996, J ATMOS SCI, V53, P2025, DOI 10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO
[5]  
2
[6]   Non-hermitian random matrix theory: Method of hermitian reduction [J].
Feinberg, J ;
Zee, A .
NUCLEAR PHYSICS B, 1997, 504 (03) :579-608
[7]   Almost Hermitian random matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics [J].
Fyodorov, YV ;
Khoruzhenko, BA ;
Sommers, HJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (04) :557-560
[8]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[9]   CIRCULAR LAW [J].
GIRKO, VL .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (04) :694-706
[10]   Distribution of eigenvalues in non-Hermitian Anderson models [J].
Goldsheid, IY ;
Khoruzhenko, BA .
PHYSICAL REVIEW LETTERS, 1998, 80 (13) :2897-2900