Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots

被引:1565
作者
Tang, Libin [1 ,2 ]
Ji, Rongbin [2 ]
Cao, Xiangke [3 ]
Lin, Jingyu [3 ]
Jiang, Hongxing [3 ]
Li, Xueming [4 ]
Teng, Kar Seng [5 ]
Luk, Chi Man [1 ]
Zeng, Songjun [1 ]
Hao, Jianhua [1 ]
Lau, Shu Ping [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
[2] Kunming Inst Phys, Kunming 650223, Yunnan Province, Peoples R China
[3] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
[4] Yunnan Normal Univ, Solar Energy Res Inst, Kunming 650092, Peoples R China
[5] Univ Swansea, Coll Engn, Multidisciplinary Nanotechnol Ctr, Swansea SA2 8PP, W Glam, Wales
基金
中国国家自然科学基金;
关键词
graphene; quantum dots; deep ultraviolet; fluorescence; self-passivated; graphene quantum dots; LIGHT-EMITTING-DIODES; BORON-NITRIDE; SIZE; SPECTROSCOPY; EFFICIENCY; SHEETS;
D O I
10.1021/nn300760g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Glucose-derived water-soluble crystalline graphene quantum dots (GQDs) with an average diameter as small as 1.65 nm (similar to 5 layers) were prepared by a facile microwave-assisted hydrothermal method. The GQDs exhibits deep ultraviolet (DUV) emission of 4.1 eV, which is the shortest emission wavelength among all the solution-based QDs. The GQDs exhibit typical excitation wavelength-dependent properties as expected in carbon-based quantum dots. However, the emission wavelength is independent of the size of the GQDs. The unique optical properties of the GQDs are attributed to the self-passivated layer on the surface of the GQDs as revealed by electron energy loss spectroscopy. The photoluminescence quantum yields of the GQDs were determined to be 7-11%. The GQDs are capable of converting blue light into white light when the GQDs are coated onto a blue light emitting diode.
引用
收藏
页码:5102 / 5110
页数:9
相关论文
共 38 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism [J].
Bao, Lei ;
Zhang, Zhi-Ling ;
Tian, Zhi-Quan ;
Zhang, Li ;
Liu, Cui ;
Lin, Yi ;
Qi, Baoping ;
Pang, Dai-Wen .
ADVANCED MATERIALS, 2011, 23 (48) :5801-5806
[3]   Insights into few-layer epitaxial graphene growth on 4H-SiC(000(1)over-bar substrates from STM studies [J].
Biedermann, Laura B. ;
Bolen, Michael L. ;
Capano, Michael A. ;
Zemlyanov, Dmitry ;
Reifenberger, Ronald G. .
PHYSICAL REVIEW B, 2009, 79 (12)
[4]   Size-dependent extinction coefficients of PbS quantum dots [J].
Cademartiri, Ludovico ;
Montanari, Erica ;
Calestani, Gianluca ;
Migliori, Andrea ;
Guagliardi, Antonietta ;
Ozin, Geoffrey A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (31) :10337-10346
[5]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[6]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[7]   An improved experimental determination of external photoluminescence quantum efficiency [J].
deMello, JC ;
Wittmann, HF ;
Friend, RH .
ADVANCED MATERIALS, 1997, 9 (03) :230-&
[8]   Electric-field controlled spin in bilayer triangular graphene quantum dots [J].
Gueclue, A. D. ;
Potasz, P. ;
Hawrylak, P. .
PHYSICAL REVIEW B, 2011, 84 (03)
[9]   Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices [J].
Gupta, Vinay ;
Chaudhary, Neeraj ;
Srivastava, Ritu ;
Sharma, Gauri Datt ;
Bhardwaj, Ramil ;
Chand, Suresh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) :9960-9963
[10]   Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots [J].
Guzelian, AA ;
Banin, U ;
Kadavanich, AV ;
Peng, X ;
Alivisatos, AP .
APPLIED PHYSICS LETTERS, 1996, 69 (10) :1432-1434