Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming

被引:125
作者
Smithes, Christopher J. [1 ]
Torstcr, Piers M. [1 ]
Allen, Myles [2 ,3 ]
Fuglestvedt, Jan [4 ]
Millar, Richard J. [2 ,5 ]
Rogelj, Joerl [6 ,7 ,8 ]
Zlckfeld, Kirsten [9 ]
机构
[1] Univ Leeds, Priestley Int Ctr Climate, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Oxford, Ctr Environm, Environm Change Inst, South Parks Rd, Oxford OX1 3QY, England
[3] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England
[4] CICERO, Postboks 1129, N-0318 Oslo, Norway
[5] Univ Exeter, Coll Engn Math & Phys Sci, North Pk Rd, Exeter EX4 4QF, Devon, England
[6] IIASA, A-2361 Laxenburg, Austria
[7] Imperial Coll, Grantham Inst Climate Change & Environm, London SW7 2AZ, England
[8] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, CH-8001 Zurich, Switzerland
[9] Simon Fraser Univ, Burnaby, BC F5A 1S6, Canada
基金
英国自然环境研究理事会;
关键词
CUMULATIVE CARBON EMISSIONS; CLIMATE SENSITIVITY; IMPULSE-RESPONSE; ENERGY BUDGET; CO2; EMISSIONS; MODEL; DIOXIDE; CONSTRAINTS; TEMPERATURE; GENERATION;
D O I
10.1038/s41467-018-07999-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Committed warming describes how much future warming can be expected from historical emissions due to inertia in the climate system. It is usually defined in terms of the level of warming above the present for an abrupt halt of emissions. Owing to socioeconomic constraints, this situation is unlikely, so we focus on the committed warming from present-day fossil fuel assets. Here we show that if carbon-intensive infrastructure is phased out at the end of its design lifetime from the end of 2018, there is a 64% chance that peak global mean temperature rise remains below 1.5 degrees C. Delaying mitigation until 2030 considerably reduces the likelihood that 1.5 degrees C would be attainable even if the rate of fossil fuel retirement was accelerated. Although the challenges laid out by the Paris Agreement are daunting, we indicate 1.5 degrees C remains possible and is attainable with ambitious and immediate emission reduction across all sectors.
引用
收藏
页数:10
相关论文
共 88 条
[41]   Efficacy of climate forcings [J].
Hansen, J ;
Sato, M ;
Ruedy, R ;
Nazarenko, L ;
Lacis, A ;
Schmidt, GA ;
Russell, G ;
Aleinov, I ;
Bauer, M ;
Bauer, S ;
Bell, N ;
Cairns, B ;
Canuto, V ;
Chandler, M ;
Cheng, Y ;
Del Genio, A ;
Faluvegi, G ;
Fleming, E ;
Friend, A ;
Hall, T ;
Jackman, C ;
Kelley, M ;
Kiang, N ;
Koch, D ;
Lean, J ;
Lerner, J ;
Lo, K ;
Menon, S ;
Miller, R ;
Minnis, P ;
Novakov, T ;
Oinas, V ;
Perlwitz, J ;
Perlwitz, J ;
Rind, D ;
Romanou, A ;
Shindell, D ;
Stone, P ;
Sun, S ;
Tausnev, N ;
Thresher, D ;
Wielicki, B ;
Wong, T ;
Yao, M ;
Zhang, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-45
[42]   How much warming are we committed to and how much can be avoided? [J].
Hare, Bill ;
Meinshausen, Malte .
CLIMATIC CHANGE, 2006, 75 (1-2) :111-149
[43]   A real-time Global Warming Index [J].
Haustein, K. ;
Allen, M. R. ;
Forster, P. M. ;
Otto, F. E. L. ;
Mitchell, D. M. ;
Matthews, H. D. ;
Frame, D. J. .
SCIENTIFIC REPORTS, 2017, 7
[44]  
Herman J., 2017, J OPEN SOURCE SOFTW, V2, DOI DOI 10.21105/JOSS.00097
[45]   Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials [J].
Jacobson, Mark Z. ;
Delucchi, Mark A. .
ENERGY POLICY, 2011, 39 (03) :1154-1169
[46]   Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions [J].
Jenkins, S. ;
Millar, R. J. ;
Leach, N. ;
Allen, M. R. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (06) :2795-2804
[47]   Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis [J].
Joos, F. ;
Roth, R. ;
Fuglestvedt, J. S. ;
Peters, G. P. ;
Enting, I. G. ;
von Bloh, W. ;
Brovkin, V. ;
Burke, E. J. ;
Eby, M. ;
Edwards, N. R. ;
Friedrich, T. ;
Froelicher, T. L. ;
Halloran, P. R. ;
Holden, P. B. ;
Jones, C. ;
Kleinen, T. ;
Mackenzie, F. T. ;
Matsumoto, K. ;
Meinshausen, M. ;
Plattner, G. -K. ;
Reisinger, A. ;
Segschneider, J. ;
Shaffer, G. ;
Steinacher, M. ;
Strassmann, K. ;
Tanaka, K. ;
Timmermann, A. ;
Weaver, A. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (05) :2793-2825
[48]   Global Carbon Budget 2017 [J].
Le Quere, Corinne ;
Andrew, Robbie M. ;
Friedlingstein, Pierre ;
Sitch, Stephen ;
Pongratz, Julia ;
Manning, Andrew C. ;
Korsbakken, Jan Ivar ;
Peters, Glen P. ;
Canadell, Josep G. ;
Jackson, Robert B. ;
Boden, Thomas A. ;
Tans, Pieter P. ;
Andrews, Oliver D. ;
Arora, Vivek K. ;
Bakker, Dorothee C. E. ;
Barbero, Leticia ;
Becker, Meike ;
Betts, Richard A. ;
Bopp, Laurent ;
Chevallier, Frederic ;
Chini, Louise P. ;
Ciais, Philippe ;
Cosca, Catherine E. ;
Cross, Jessica ;
Currie, Kim ;
Gasser, Thomas ;
Harris, Ian ;
Hauck, Judith ;
Haverd, Vanessa ;
Houghton, Richard A. ;
Hunt, Christopher W. ;
Hurtt, George ;
Ilyina, Tatiana ;
Jain, Atul K. ;
Kato, Etsushi ;
Kautz, Markus ;
Keeling, Ralph F. ;
Goldewijk, Kees Klein ;
Koertzinger, Arne ;
Landschuetzer, Peter ;
Lefevre, Nathalie ;
Lenton, Andrew ;
Lienert, Sebastian ;
Lima, Ivan ;
Lombardozzi, Danica ;
Metzl, Nicolas ;
Millero, Frank ;
Monteiro, Pedro M. S. ;
Munro, David R. ;
Nabel, Julia E. M. S. .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (01) :405-448
[49]   Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations [J].
Marvel, Kate ;
Pincus, Robert ;
Schmidt, Gavin A. ;
Miller, Ron L. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (03) :1595-1601
[50]   Irreversible Does Not Mean Unavoidable [J].
Matthews, H. Damon ;
Solomon, Susan .
SCIENCE, 2013, 340 (6131) :438-439