Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability

被引:93
作者
Yang, Wen [1 ]
Xiang, Wei [2 ,3 ]
Chen, Yan-Xiao [1 ]
Wu, Zhen-Guo [1 ]
Hua, Wei-Bo [4 ]
Qiu, Lang [1 ]
He, Feng-Rong [3 ]
Zhang, Jun [3 ]
Zhong, Ben-He [1 ]
Guo, Xiao-Dong [1 ]
机构
[1] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[3] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
[4] Karlsruhe Inst Technol, Inst Appl Mat, D-76344 Eggenstein Leopoldshafen, Germany
基金
中国国家自然科学基金;
关键词
Ni-rich layered cathode; boron; NiO salt-like; surface modification; doping; TRANSITION-METAL OXIDE; SURFACE;
D O I
10.1021/acsami.9b18542
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ni-rich cathodes LiNi(x)CoyAl(1-x-y)O(2) (0.8 < x < 1) with high energy density, environmental benignity, and low cost are regarded as the most promising candidate materials for next-generation lithium batteries. Unfortunately, capacity fading derived from unstable surface properties and intrinsic structural instability under extreme conditions limits large-scale commercial utilization. Herein, an interface-regulated Ni-rich cathode material LiNi0.87Co0.10Al0.03O2 with a layer (R (3) over barm) core, a NiO salt-like (Fm (3) over barm) phase, and an ultrathin amorphous ion-conductive LiBO2 (LBO) layer is constructed by gradient boron incorporation and lithium-reactive coating during calcination. The ultrathin LBO layer not only exhausts residual lithium species but also acts as a layer for Li+ transport and insulation of detrimental reaction. The NiO salt-like phase in the subsurface could enhance the structural stability of the layer core for the pillar effects. With the positive role provided by the functional hybrid surface layer and boron doping, the modified cathode exhibits enhanced Li+ conductivity, structural stability, reversibility of the H2-H3 phase transition, suppressed side reactions, ameliorated transition-metal dissolution, and excellent electrochemical performance. Especially, a 1% wt boron-modified cathode delivers a discharge capacity of 211.99 mA h g(-1) in the potential range of 3.0-4.3 V at 0.2 C and excellent cycle life with a capacity retention of 89.43% after 200 cycles at 1 C.
引用
收藏
页码:10240 / 10251
页数:12
相关论文
共 43 条
[1]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[2]   Understanding the Role of Minor Molybdenum Doping in LiNi0.5Co0.2Mn0.3O2 Electrodes: from Structural and Surface Analyses and Theoretical Modeling to Practical Electrochemical Cells [J].
Breuer, Ortal ;
Chakraborty, Arup ;
Liu, Jing ;
Kravchuk, Tatyana ;
Burstein, Larisa ;
Grinblat, Judith ;
Kauffman, Yaron ;
Gladkih, Alexandr ;
Nayak, Prasant ;
Tsubery, Merav ;
Frenkel, Anatoly I. ;
Talianker, Michael ;
Major, Dan T. ;
Markovsky, Boris ;
Aurbach, Doron .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) :29608-29621
[3]   Ni-Rich LiNi0.8Co0.1Mn0.1O2 Oxide Coated by Dual-Conductive Layers as High Performance Cathode for Lithium-Ion Batteries [J].
Chen, Shi ;
He, Tao ;
Su, Yuefeng ;
Lu, Yun ;
Ban, Liying ;
Chen, Lai ;
Zhang, Qiyu ;
Wang, Jing ;
Chen, Renjie ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) :29732-29743
[4]   The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material [J].
Chen, Tao ;
Li, Xiang ;
Wang, Hao ;
Yan, Xinxiu ;
Wang, Lei ;
Deng, Bangwei ;
Ge, Wujie ;
Qu, Meizhen .
JOURNAL OF POWER SOURCES, 2018, 374 :1-11
[5]   A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer [J].
Cho, Yonghyun ;
Oh, Pilgun ;
Cho, Jaephil .
NANO LETTERS, 2013, 13 (03) :1145-1152
[6]  
Choi A., 2017, ADV ENERGY MATER
[7]   Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage [J].
Fu, Jiale ;
Mu, Daobin ;
Wu, Borong ;
Bi, Jiaying ;
Cui, Hui ;
Yang, Hao ;
Wu, Hanfeng ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19704-19711
[8]   Variation of Electronic Conductivity within Secondary Particles Revealing a Capacity-Fading Mechanism of Layered Ni-Rich Cathode [J].
Kim, Jae-Hyung ;
Kim, Suk Jun ;
Yuk, Taewon ;
Kim, Jaekook ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ACS ENERGY LETTERS, 2018, 3 (12) :3002-3007
[9]   Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries [J].
Kim, U. -H. ;
Jun, D. -W. ;
Park, K. -J. ;
Zhang, Q. ;
Kaghazchi, P. ;
Aurbach, D. ;
Major, D. T. ;
Goobes, G. ;
Dixit, M. ;
Leifer, N. ;
Wang, C. M. ;
Yan, P. ;
Ahn, D. ;
Kim, K. -H. ;
Yoon, C. S. ;
Sun, Y. -K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1271-1279
[10]   Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles [J].
Kim, Un-Hyuck ;
Ryu, Hoon-Hee ;
Kim, Jae-Hyung ;
Muecke, Robert ;
Kaghazchi, Payam ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2019, 9 (15)