Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion

被引:689
作者
Ryu, Seongwoo [1 ,2 ]
Lee, Phillip [1 ]
Chou, Jeffrey B. [1 ]
Xu, Ruize [1 ]
Zhao, Rong [2 ]
Hart, Anastasios John [1 ]
Kim, Sang-Gook [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Singapore Univ Technol & Design, Engn Prod Dev, Singapore 138682, Singapore
关键词
carbon nanotube; fiber; strain sensor; elastic electrode; wearable device; STRETCHABLE ELECTRONICS; FILMS; CONDUCTORS; DEVICES; SILICON; YARNS; SKIN;
D O I
10.1021/acsnano.5b00599
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented (NT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables (NT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented (NT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their, applications are limited to their strain.
引用
收藏
页码:5929 / 5936
页数:8
相关论文
共 38 条
[1]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[2]   The first truly all-polymer electrochromic devices [J].
Argun, AA ;
Cirpan, A ;
Reynolds, JR .
ADVANCED MATERIALS, 2003, 15 (16) :1338-+
[3]   Biaxially stretchable "Wavy" silicon nanomembranes [J].
Choi, Won Mook ;
Song, Jizhou ;
Khang, Dahl-Young ;
Jiang, Hanqing ;
Huang, Yonggang Y. ;
Rogers, John A. .
NANO LETTERS, 2007, 7 (06) :1655-1663
[4]   Super-tough carbon-nanotube fibres -: These extraordinary composite fibres can be woven into electronic textiles. [J].
Dalton, AB ;
Collins, S ;
Muñoz, E ;
Razal, JM ;
Ebron, VH ;
Ferraris, JP ;
Coleman, JN ;
Kim, BG ;
Baughman, RH .
NATURE, 2003, 423 (6941) :703-703
[5]   Nanotube film based on single-wall carbon nanotubes for strain sensing [J].
Dharap, P ;
Li, ZL ;
Nagarajaiah, S ;
Barrera, EV .
NANOTECHNOLOGY, 2004, 15 (03) :379-382
[6]   Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment [J].
Geng, Hong-Zhang ;
Kim, Ki Kang ;
Song, Chulho ;
Xuyen, Nguyen Thi ;
Kim, Soo Min ;
Park, Kyung Ah ;
Lee, Dae Sik ;
An, Kay Hyeok ;
Lee, Young Sil ;
Chang, Youngkyu ;
Lee, Young Jun ;
Choi, Jae Young ;
Benayad, Anass ;
Lee, Young Hee .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (11) :1261-1266
[7]   Piezoresistance of carbon nanotubes on deformable thin-film membranes [J].
Grow, RJ ;
Wang, Q ;
Cao, J ;
Wang, DW ;
Dai, HJ .
APPLIED PHYSICS LETTERS, 2005, 86 (09) :1-3
[8]   A Novel Class of Strain Gauges Based on Layered Percolative Films of 2D Materials [J].
Hempel, Marek ;
Nezich, Daniel ;
Kong, Jing ;
Hofmann, Mario .
NANO LETTERS, 2012, 12 (11) :5714-5718
[9]   Nanotechnology: Spinning continuous carbon nanotube yarns - Carbon nanotubes weave their way into a range of imaginative macroscopic applications. [J].
Jiang, KL ;
Li, QQ ;
Fan, SS .
NATURE, 2002, 419 (6909) :801-801
[10]   Deriving Carbon Atomic Chains from Graphene [J].
Jin, Chuanhong ;
Lan, Haiping ;
Peng, Lianmao ;
Suenaga, Kazu ;
Iijima, Sumio .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)