Semiconducting Two-Dimensional Graphene Nanoconstriction Arrays

被引:43
作者
Safron, Nathaniel S. [1 ]
Brewer, Adam S. [1 ]
Arnold, Michael S. [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
NANOSPHERE LITHOGRAPHY; FABRICATION;
D O I
10.1002/smll.201001193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication and characterization of two-dimensional nanoconstriction arrays consisting of sub-20-nm graphene constrictions and interconnecting graphene islands are reported. The arrays are fabricated in a scalable top-down fashion using self-assembled close-packed polystyrene nanospheres as lithographic templates and characterized using electron microscopy, Raman spectroscopy, and charge transport measurements. At room temperature, the arrays behave as semiconductors with a field-effect conductance modulation of up to 450 and charge mobilities of similar to 1 cm(2) V-1 s(-1). The effective bandgap of the arrays scales inversely with the nanoconstriction width, indicating that its magnitude is determined by quantum confinement in the constrictions. At low temperatures, the arrays act as semiconductors, with increasing ON/OFF conductance modulation up to similar to 1000, and simultaneously act as 2D arrays of coupled Coulomb islands affected by single-electron charging events. The high conductance modulation of these nanopatterned graphene materials, combined with the scalability of the patterning approach is expected to impact thin film, flexible, and transparent semiconductor electronics.
引用
收藏
页码:492 / 498
页数:7
相关论文
共 32 条
[1]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[4]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[5]   Fabrication of nanopillars by nanosphere lithography [J].
Cheung, CL ;
Nikolic, RJ ;
Reinhardt, CE ;
Wang, TF .
NANOTECHNOLOGY, 2006, 17 (05) :1339-1343
[6]   Electronic transport through a quantum dot network [J].
Dorn, A ;
Ihn, T ;
Ensslin, K ;
Wegscheider, W ;
Bichler, M .
PHYSICAL REVIEW B, 2004, 70 (20) :205306-1
[7]   Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition [J].
Duan, Guotao ;
Cai, Weiping ;
Luo, Yuanyuan ;
Li, Zhigang ;
Lei, Yong .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (32) :15729-15733
[8]   Weak localization and transport gap in graphene antidot lattices [J].
Eroms, J. ;
Weiss, D. .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)