Quantum dynamical entropies in discrete classical chaos

被引:13
作者
Benatti, F
Cappellini, V
Zertuche, F
机构
[1] Univ Trieste, Dipartimento Fis Teor, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62251, Morelos, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 01期
关键词
D O I
10.1088/0305-4470/37/1/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss certain analogies between quantization and discretization of classical systems on manifolds. In particular, we will apply the quantum dynamical entropy of Alicki and Fannes to numerically study the footprints of chaos in discretized versions of hyperbolic maps on the torus.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 21 条
[1]  
ALEKSEEV VM, 1981, PHYS REP, V75, P287, DOI 10.1016/0370-1573(81)90186-1
[2]   An algebraic approach to the Kolmogorov-Sinai entropy [J].
Alicki, R ;
Andries, J ;
Fannes, M ;
Tuyls, P .
REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (02) :167-184
[3]   DEFINING QUANTUM DYNAMICAL ENTROPY [J].
ALICKI, R ;
FANNES, M .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (01) :75-82
[4]  
Alicki R., 2001, QUANTUM DYNAMICAL SY
[5]  
[Anonymous], 1999, INTRO MODERN THEORY
[6]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[7]  
BOFFETTA G, 2001, NLINCD0101029
[8]  
Casati G., 1995, QUANTUM CHAOS ORDER
[9]   ERGODIC AND STATISTICAL PROPERTIES OF PIECEWISE LINEAR HYPERBOLIC AUTOMORPHISMS OF THE 2-TORUS [J].
CHERNOV, NI .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (1-2) :111-134
[10]   APPLYING ALGORITHMIC COMPLEXITY TO DEFINE CHAOS IN THE MOTION OF COMPLEX-SYSTEMS [J].
CRISANTI, A ;
FALCIONI, M ;
MANTICA, G ;
VULPIANI, A .
PHYSICAL REVIEW E, 1994, 50 (03) :1959-1967