Methods, algorithms and tools in computational proteomics: A practical point of view

被引:57
作者
Matthiesen, Rune [1 ]
机构
[1] CIBER HEPAD, CIC BioGUNE, Bioinformat Grp, Derio 48160, Spain
关键词
bioinformatics; database search; quantitative proteomics;
D O I
10.1002/pmic.200700116
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational MS-based proteomics is an emerging field arising from the demand of high throughput analysis in numerous large-scale experimental proteomics projects. The review provides a broad overview of a number of computational tools available for data analysis of MS-based proteomics data and gives appropriate literature references to detailed description of algorithms. The review provides, to some extent, discussion of algorithms and methods for peptide and protein identification using MS data, quantitative proteomics, and data storage. The hope is that it will stimulate discussion and further development in computational proteomics. Computational proteomics deserves more scientific attention. There are far fewer computational tools and methods available for proteomics compared to the number of microarray tools, despite the fact that data analysis in proteomics is much more complex than microarray analysis.
引用
收藏
页码:2815 / 2832
页数:18
相关论文
共 157 条
[81]   Proteomic tools for quantitation by mass spectrometry [J].
Lill, J .
MASS SPECTROMETRY REVIEWS, 2003, 22 (03) :182-194
[82]   What is mzXML good for? [J].
Lin, Simon M. ;
Zhu, Lihua ;
Winter, Andrew Q. ;
Sasinowski, Maciek ;
Kibbe, Warren A. .
EXPERT REVIEW OF PROTEOMICS, 2005, 2 (06) :839-845
[83]   Proteome informatics II: Bioinformatics for comparative proteomics [J].
Lisacek, Frederique ;
Cohen-Boulakia, Sarah ;
Appel, Ron D. .
PROTEOMICS, 2006, 6 (20) :5445-5466
[84]   Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry [J].
Listgarten, J ;
Emili, A .
MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (04) :419-434
[85]   Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST [J].
López-Ferrer, D ;
Martinez-Bartolomé, S ;
Villar, M ;
Campillos, M ;
Martín-Maroto, F ;
Vázquez, J .
ANALYTICAL CHEMISTRY, 2004, 76 (23) :6853-6860
[86]   Use of a 49-peptide library for a qualitative and quantitative determination of pseudomonal serralysin specificity [J].
Louis, D ;
Bernillon, J ;
Wallach, JM .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (12) :1435-1441
[87]   A correlation algorithm for the automated quantitative analysis of shotgun proteomics data [J].
MacCoss, MJ ;
Wu, CC ;
Liu, HB ;
Sadygov, R ;
Yates, JR .
ANALYTICAL CHEMISTRY, 2003, 75 (24) :6912-6921
[88]   Shotgun identification of protein modifications from protein complexes and lens tissue [J].
MacCoss, MJ ;
McDonald, WH ;
Saraf, A ;
Sadygov, R ;
Clark, JM ;
Tasto, JJ ;
Gould, KL ;
Wolters, D ;
Washburn, M ;
Weiss, A ;
Clark, JI ;
Yates, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7900-7905
[89]   eComputational prediction of proteotypic peptides for quantitative proteomics [J].
Mallick, Parag ;
Schirle, Markus ;
Chen, Sharon S. ;
Flory, Mark R. ;
Lee, Hookeun ;
Martin, Daniel ;
Raught, Brian ;
Schmitt, Robert ;
Werner, Thilo ;
Kuster, Bernhard ;
Aebersold, Ruedi .
NATURE BIOTECHNOLOGY, 2007, 25 (01) :125-131
[90]   Deconvolution filters to enhance resolution of dense time-of-flight survey spectra in the time-lag optimization range [J].
Malyarenko, Dariya I. ;
Cooke, William E. ;
Tracy, Eugene R. ;
Trosset, Michael W. ;
Semmes, O. John ;
Sasinowski, Maciek ;
Manos, Dennis M. .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2006, 20 (11) :1661-1669