A fully dynamic algorithm for planar width

被引:8
作者
Chan, TA [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1007/s00454-003-2923-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to maintain the width of a set of n planar. points subject to insertions and deletions of points in O(rootnlog(3) n) amortized time per update. Previously, no fully dynamic algorithm with a guaranteed sublinear time bound was known.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 21 条
[1]  
Agarwal P. K., 1991, Computational Geometry: Theory and Applications, V1, P65, DOI 10.1016/0925-7721(91)90001-U
[2]   DYNAMIC HALF-SPACE RANGE REPORTING AND ITS APPLICATIONS [J].
AGARWAL, PK ;
MATOUSEK, J .
ALGORITHMICA, 1995, 13 (04) :325-345
[3]   A LINEAR-TIME ALGORITHM FOR COMPUTING THE VORONOI DIAGRAM OF A CONVEX POLYGON [J].
AGGARWAL, A ;
GUIBAS, LJ ;
SAXE, J ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :591-604
[4]  
[Anonymous], J ALGORITHMS
[5]  
Brodal GS, 2002, ANN IEEE SYMP FOUND, P617, DOI 10.1109/SFCS.2002.1181985
[6]  
Chan TM, 2002, SIAM PROC S, P474
[7]   Dynamic planar convex hull operations in near-logarithmic amortized time [J].
Chan, TM .
JOURNAL OF THE ACM, 2001, 48 (01) :1-12
[8]   ON THE CONVEX LAYERS OF A PLANAR SET [J].
CHAZELLE, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) :509-517
[9]   DYNAMIC EUCLIDEAN MINIMUM SPANNING-TREES AND EXTREMA OF BINARY FUNCTIONS [J].
EPPSTEIN, D .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (01) :111-122
[10]   Average case analysis of dynamic geometric optimization [J].
Eppstein, D .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1996, 6 (01) :45-68