Computational identification and analysis of protein short linear motifs

被引:27
作者
Davey, Norman E. [1 ,2 ,3 ,4 ]
Edwards, Richard J. [5 ]
Shields, Denis C. [1 ,2 ,3 ]
机构
[1] Univ Coll Dublin, UCD Complex & Adapt Syst Lab, Dublin 4, Ireland
[2] Univ Coll Dublin, UCD Conway Inst Biomol & Biomed Res, Dublin 4, Ireland
[3] Univ Coll Dublin, UCD Sch Med & Med Sci, Dublin 4, Ireland
[4] EMBL Struct & Computat Biol Unit, D-69117 Heidelberg, Germany
[5] Univ Southampton, Sch Biol Sci, Southampton, Hants, England
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2010年 / 15卷
基金
爱尔兰科学基金会;
关键词
Protein Linear Motif; Motif; Protein; Short Linear Motif; Evolution; Bioinformatics; Review;
D O I
10.2741/3647
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Short linear motifs (SLiMs) in proteins can act as targets for proteolytic cleavage, sites of post-translational modification, determinants of sub-cellular localization, and mediators of protein-protein interactions. Computational discovery of SLiMs involves assembling a group of proteins postulated to share a potential motif, masking out residues less likely to contain such a motif, down-weighting shared motifs arising through common evolutionary descent, and calculation of statistical probabilities allowing for the multiple testing of all possible motifs. Much of the challenge for motif discovery lies in the assembly and masking of datasets of proteins likely to share motifs, since the motifs are typically short (between 3 and 10 amino acids in length), so that potential signals can be easily swamped by the noise of stochastically recurring motifs. Focusing on disordered regions of proteins, where SLiMs are predominantly found, and masking out nonconserved residues can reduce the level of noise but more work is required to improve the quality of high-throughput experimental datasets (e. g. of physical protein interactions) as input for computational discovery.
引用
收藏
页码:801 / 825
页数:25
相关论文
共 168 条
  • [1] Normalization of nomenclature for peptide motifs as ligands of modular protein domains
    Aasland, R
    Abrams, C
    Ampe, C
    Ball, LJ
    Bedford, MT
    Cesareni, G
    Gimona, M
    Hurley, JH
    Jarchau, T
    Lehto, VP
    Lemmon, MA
    Linding, R
    Mayer, BJ
    Nagai, M
    Sudol, M
    Walter, U
    Winder, SJ
    [J]. FEBS LETTERS, 2002, 513 (01) : 141 - 144
  • [2] Disordered Flanks Prevent Peptide Aggregation
    Abeln, Sanne
    Frenkel, Daan
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (12)
  • [3] Ahram Mamoun, 2006, In Silico Biology, V6, P379
  • [4] ALFARANO C, 2005, NUCLEIC ACIDS RES, V33, P24
  • [5] A curated compendium of phosphorylation motifs
    Amanchy, Ramars
    Periaswamy, Balamurugan
    Mathivanan, Suresh
    Reddy, Raghunath
    Tattikota, Sudhir Gopal
    Pandey, Akhilesh
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (03) : 285 - 286
  • [6] [Anonymous], NUCLEIC ACIDS RES
  • [7] PIANA: protein interactions and network analysis
    Aragues, R
    Jaeggi, D
    Oliva, B
    [J]. BIOINFORMATICS, 2006, 22 (08) : 1015 - 1017
  • [8] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [9] BAILEY TL, 2006, NUCLEIC ACIDS RES, V34, P73
  • [10] The universal protein resource (UniProt)
    Bairoch, A
    Apweiler, R
    Wu, CH
    Barker, WC
    Boeckmann, B
    Ferro, S
    Gasteiger, E
    Huang, HZ
    Lopez, R
    Magrane, M
    Martin, MJ
    Natale, DA
    O'Donovan, C
    Redaschi, N
    Yeh, LSL
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : D154 - D159