Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures

被引:94
作者
Li, Jing [1 ]
Pei, Gang [1 ]
Li, Yunzhu [1 ]
Wang, Dongyue [1 ]
Ji, Jie [1 ]
机构
[1] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Organic Rankine cycle; Irreversibility; Energy conversion; Exergy loss; SMALL-SCALE; PERFORMANCE; SYSTEM; POWER;
D O I
10.1016/j.energy.2011.12.032
中图分类号
O414.1 [热力学];
学科分类号
摘要
The energetic and exergetic performance of an updated ORC (organic Rankine cycle) is investigated. The thermal efficiencies of the ORC at different heat source temperatures of about 100, 90, 80, and 70 degrees C are explored. The thermodynamic irreversibility that takes place in the evaporator, condenser, turbine, pump, and separator is revealed. The ORC feasibility for low-temperature applications is demonstrated. With a hot side temperature of around 80 degrees C, a thermal efficiency of 7.4% and a turbine isentropic efficiency of 0.68 can be achieved. The present research further indicates that exergy destruction caused by heat transfer through an appreciable temperature difference in the evaporator is the largest in the energy conversion process, followed by that in the condenser. The exergy destroyed in the heat exchangers amounts to 74% of the overall exergy loss. The total system exergy efficiency is approximately 40%; thus, ways to improve exergy efficiency are required. HCFC-123, a dry fluid, is experimentally confirmed to be highly superheated after expansion in this study. A regenerator should be used to preheat HCFC-123 prior to entering the evaporator. Meanwhile the heat-transfer configuration with two oil cycles can be a good solution to overcome the thermodynamic disadvantage of a one-stage evaporator. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 20 条
[11]   Experimental Testing of Gerotor and Scroll Expanders Used in, and Energetic and Exergetic Modeling of, an Organic Rankine Cycle [J].
Mathias, James A. ;
Johnston, Jon R., Jr. ;
Cao, Jiming ;
Priedeman, Douglas K. ;
Christensen, Richard N. .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (01) :0122011-0122019
[12]   Construction and dynamic test of a small-scale organic rankine cycle [J].
Pei, Gang ;
Li, Jing ;
Li, Yunzhu ;
Wang, Dongyue ;
Ji, Jie .
ENERGY, 2011, 36 (05) :3215-3223
[13]   Performance of small-scale regenerative Rankine power cycle employing a scroll expander [J].
Peterson, R. B. ;
Wang, H. ;
Herron, T. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2008, 222 (A3) :271-282
[14]   Experimental study and modeling of an Organic Rankine Cycle using scroll expander [J].
Quoilin, Sylvain ;
Lemort, Vincent ;
Lebrun, Jean .
APPLIED ENERGY, 2010, 87 (04) :1260-1268
[15]   A novel hybrid heat-pipe solar collector/CHP system - Part II: theoretical and experimental investigations [J].
Riffat, SB ;
Zhao, X .
RENEWABLE ENERGY, 2004, 29 (12) :1965-1990
[16]   Working fluids for low-temperature organic Rankine cycles [J].
Saleh, Bahaa ;
Koglbauer, Gerald ;
Wendland, Martin ;
Fischer, Johann .
ENERGY, 2007, 32 (07) :1210-1221
[17]  
Sonntag RE, 1996, COMPUTER AIDED THERM
[18]  
Tom Batchelor, 2011, GLOBAL ENV BENEFIT U
[19]   Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa [J].
Wang, X. D. ;
Zhao, L. ;
Wang, J. L. ;
Zhang, W. Z. ;
Zhao, X. Z. ;
Wu, W. .
SOLAR ENERGY, 2010, 84 (03) :353-364
[20]   Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery [J].
Yamada, Noboru ;
Minami, Takahiro ;
Mohamad, Md Nor Anuar .
ENERGY, 2011, 36 (02) :1010-1017