Single cell analysis at the nanoscale

被引:87
作者
Zheng, Xin Ting [1 ,2 ,3 ]
Li, Chang Ming [1 ,2 ,3 ]
机构
[1] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
[3] Nanyang Technol Univ, Ctr Adv Bionanosyst, Singapore 637457, Singapore
关键词
ATOMIC-FORCE MICROSCOPY; SCANNING ION CONDUCTANCE; OPTICAL MICROSCOPY; QUANTUM DOTS; MEMBRANES; PROTEINS; DELIVERY; SENSOR; SPECTROSCOPY; NANONEEDLE;
D O I
10.1039/c1cs15265c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fundamental life processes such as signal transduction, intracellular trafficking, protein degradation, and DNA repair often occur in nanometric subcellular compartments. It is essential to conduct single cell analysis specifically at the nanoscale to fully understand the critical cellular processes while providing important medical applications. However, there are great challenges in achieving high spatial resolution in single cells for uncovering spatial heterogeneity, high sensitivity for biomolecule detections and high specificity in complicated cellular environment. In this tutorial review, we survey recent progress toward single cell analysis at the nanoscale by emphasizing how the advancement in nanotechnology has brought a plethora of nanotools to interrogate single cells with high spatiotemporal resolutions. In particular, analysis principle, nanoscale probe fabrication, high resolution cellular analysis, data collection and processing are introduced. New cell biochemistry and biology insights revealed by the unique single cell analysis methods are highlighted. The perspectives on future opportunities and unsolved challenges are also discussed.
引用
收藏
页码:2061 / 2071
页数:11
相关论文
共 73 条
[31]   FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond [J].
Meister, Andre ;
Gabi, Michael ;
Behr, Pascal ;
Studer, Philipp ;
Voeroes, Janos ;
Niedermann, Philippe ;
Bitterli, Joanna ;
Polesel-Maris, Jerome ;
Liley, Martha ;
Heinzelmann, Harry ;
Zambelli, Tomaso .
NANO LETTERS, 2009, 9 (06) :2501-2507
[32]   Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology [J].
Mueller, Daniel J. ;
Dufrene, Yves F. .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :261-269
[33]   Carbon Nanotube-Tipped Endoscope for In Situ Intracellular Surface-Enhanced Raman Spectroscopy [J].
Niu, Jun Jie ;
Schrlau, Michael G. ;
Friedman, Gary ;
Gogotsi, Yury .
SMALL, 2011, 7 (04) :540-545
[34]  
Novak P, 2009, NAT METHODS, V6, P279, DOI [10.1038/nmeth.1306, 10.1038/NMETH.1306]
[35]   Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle [J].
Obataya, I ;
Nakamura, C ;
Han, S ;
Nakamura, N ;
Miyake, J .
NANO LETTERS, 2005, 5 (01) :27-30
[36]   Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays [J].
Patolsky, Fernando ;
Timko, Brian P. ;
Yu, Guihua ;
Fang, Ying ;
Greytak, Andrew B. ;
Zheng, Gengfeng ;
Lieber, Charles M. .
SCIENCE, 2006, 313 (5790) :1100-1104
[37]   CMOS-Compatible Nanowire Sensor Arrays for Detection of Cellular Bioelectricity [J].
Pui, Tze-Sian ;
Agarwal, Ajay ;
Ye, Feng ;
Balasubramanian, Narayanan ;
Chen, Peng .
SMALL, 2009, 5 (02) :208-212
[38]   SERS-based plasmonic nanobiosensing in single living cells [J].
Scaffidi, Jonathan P. ;
Gregas, Molly K. ;
Seewaldt, Victoria ;
Vo-Dinh, Tuan .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 393 (04) :1135-1141
[39]   Cell Electrophysiology with Carbon Nanopipettes [J].
Schrlau, Michael G. ;
Dun, Nae J. ;
Bau, Haim H. .
ACS NANO, 2009, 3 (03) :563-568
[40]   Simultaneous measurement of Ca2+ and cellular dynamics:: Combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes [J].
Shevchuk, AI ;
Gorelik, J ;
Harding, SE ;
Lab, MJ ;
Klenerman, D ;
Korchev, YE .
BIOPHYSICAL JOURNAL, 2001, 81 (03) :1759-1764