Growth of TiO2 nanorod arrays on reduced graphene oxide with enhanced lithium-ion storage

被引:60
作者
He, Lifang [1 ,2 ]
Ma, Ruguang [1 ,2 ]
Du, Ning [3 ,4 ]
Ren, Jianguo [1 ,2 ]
Wong, Tailun [1 ,2 ]
Li, Yangyang [1 ,2 ]
Lee, Shuit Tong [1 ,2 ,5 ,6 ]
机构
[1] City Univ Hong Kong, Ctr Super Diamond Adv Films COSDAF, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[3] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[5] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[6] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
关键词
ELECTROCHEMICAL CHARACTERIZATION; PHOTOCATALYTIC ACTIVITY; FACILE SYNTHESIS; LI; NANOTUBES; ELECTRODE; ELECTROACTIVITY; PERFORMANCE; NANOSHEETS; EFFICIENT;
D O I
10.1039/c2jm33571a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate the synthesis of a sandwich-like nanocomposite by planting rutile TiO2 nanorods onto reduced graphene oxide (RGO) via a modified seed-assisted hydrothermal growth method. The synthetic process consists of functionalization of graphene oxide (GO), followed by hydrolytic deposition of TiO2 nanoparticles on GO and reduction, and finally hydrothermal growth of rutile TiO2 nanorods on RGO. The resultant nanocomposite, i.e. rutile TiO2 nanorod arrays on RGO (TONRAs-RGO), exhibits largely enhanced reversible charge-discharge capacity and rate capability compared to bare TiO2 nanorods (TONRs) due to its unique structure and superior conductivity. The rate performance of the nanocomposite is also better than that of anatase TiO2 nanoparticles. This study will inspire better design of RGO-based nanocomposites for high energy density lithium-ion battery applications.
引用
收藏
页码:19061 / 19066
页数:6
相关论文
共 41 条
[11]   Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material [J].
Gao, XP ;
Zhu, HY ;
Pan, GL ;
Ye, SH ;
Lan, Y ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (09) :2868-2872
[12]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[13]   High lithium electroactivity of nanometer-sized rutile TiO2 [J].
Hu, Yong-Sheng ;
Kienle, Lorenz ;
Guo, Yu- Guo ;
Maier, Joachim .
ADVANCED MATERIALS, 2006, 18 (11) :1421-+
[14]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[15]   Direct low-temperature synthesis of rutile nanostructures in ionic liquids [J].
Kaper, Helena ;
Endres, Frank ;
Djerdj, Igor ;
Antonietti, Markus ;
Smarsly, Bernd M. ;
Maier, Joachim ;
Hu, Yong-Sheng .
SMALL, 2007, 3 (10) :1753-1763
[16]   TiO2@Sn core-shell nanotubes for fast and high density Li-ion storage material [J].
Kim, Hyesun ;
Kim, Min Gyu ;
Shin, Tae Joo ;
Shin, Hyun-Jun ;
Cho, Jaephil .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1669-1672
[17]   Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries [J].
Kubiak, P. ;
Pfanzelt, M. ;
Geserick, J. ;
Hoermann, U. ;
Huesing, N. ;
Kaiser, U. ;
Wohlfahrt-Mehrens, M. .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :1099-1104
[18]   Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly [J].
Li, Na ;
Liu, Gang ;
Zhen, Chao ;
Li, Feng ;
Zhang, Lili ;
Cheng, Hui-Ming .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (09) :1717-1722
[19]   Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser [J].
Ma, H. L. ;
Yang, J. Y. ;
Dai, Y. ;
Zhang, Y. B. ;
Lu, B. ;
Ma, G. H. .
APPLIED SURFACE SCIENCE, 2007, 253 (18) :7497-7500
[20]   Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries [J].
Mai, Liqiang ;
Xu, Lin ;
Han, Chunhua ;
Xu, Xu ;
Luo, Yanzhu ;
Zhao, Shiyong ;
Zhao, Yunlong .
NANO LETTERS, 2010, 10 (11) :4750-4755