Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure

被引:135
作者
Heiss, S
Wachter, A
Bogs, J
Cobbett, C
Rausch, T [1 ]
机构
[1] Heidelberger Inst Pflanzenwissensch, INF 360, D-69120 Heidelberg, Germany
[2] Univ Melbourne, Dept Genet, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Brassica juncea; cadmium; heavy metal; phytochelatin synthase;
D O I
10.1093/jxb/erg205
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Higher plants respond to cadmium exposure with the production of phytochelatins (PCn), small heavy metal binding peptides, which are synthesized from glutathione by phytochelatin synthase (PCS). The isolation of a PCS cDNA clone from Brassica juncea L. cv. Vitasso, a candidate species for phytoremediation, is reported here. CLUSTAL analysis revealed a close relationship of BjPCS1 with PCS proteins from Arabidopsis thaliana and Thlaspi caerulescens. BjPCS1 expressed as recombinant protein in E. coli had PCS activity in vitro that was activated by 50 muM Cu and 200 muM Cd to a similar extent. Immunoblot analysis with an antiserum directed against recombinant BjPCS1 showed constitutive PCS expression during plant development. As a percentage of the total protein, the expression was higher in the roots, internodes and petioles in comparison with the leaf tissue. When B. juncea plants were treated with 25 muM cadmium, PCn accumulated increasingly over a 6 d period. Levels in shoots were about 3-fold higher than in roots. Prolonged cadmium exposure caused a significant increase of PCS protein in leaves, whereas in roots PCS protein levels were not affected.
引用
收藏
页码:1833 / 1839
页数:7
相关论文
共 32 条
[1]   Split Decomposition: A New and Useful Approach to Phylogenetic Analysis of Distance Data [J].
Bandelt, Hans-Juergen ;
Dress, Andreas W. M. .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 1992, 1 (03) :242-252
[2]   Arabidopsis thaliana expresses a second functional phytochelatin synthase [J].
Cazalé, AC ;
Clemens, S .
FEBS LETTERS, 2001, 507 (02) :215-219
[3]   A long way ahead:: understanding and engineering plant metal accumulation [J].
Clemens, S ;
Palmgren, MG ;
Krämer, U .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :309-315
[4]   Caenorhabditis elegans expresses a functional phytochelatin synthase [J].
Clemens, S ;
Schroeder, JI ;
Degenkolb, T .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (13) :3640-3643
[5]   Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast [J].
Clemens, S ;
Kim, EJ ;
Neumann, D ;
Schroeder, JI .
EMBO JOURNAL, 1999, 18 (12) :3325-3333
[6]   A family of phytochelatin synthase genes from plant, fungal and animal species [J].
Cobbett, CS .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :335-337
[7]   Phytochelatins and their roles in heavy metal detoxification [J].
Cobbett, CS .
PLANT PHYSIOLOGY, 2000, 123 (03) :825-832
[8]   Studies on cadmium toxicity in plants: A review [J].
Das, P ;
Samantaray, S ;
Rout, GR .
ENVIRONMENTAL POLLUTION, 1997, 98 (01) :29-36
[9]   PHYTOCHELATINS - THE PRINCIPAL HEAVY-METAL COMPLEXING PEPTIDES OF HIGHER-PLANTS [J].
GRILL, E ;
WINNACKER, EL ;
ZENK, MH .
SCIENCE, 1985, 230 (4726) :674-676
[10]   PHYTOCHELATINS, THE HEAVY-METAL-BINDING PEPTIDES OF PLANTS, ARE SYNTHESIZED FROM GLUTATHIONE BY A SPECIFIC GAMMA-GLUTAMYLCYSTEINE DIPEPTIDYL TRANSPEPTIDASE (PHYTOCHELATIN SYNTHASE) [J].
GRILL, E ;
LOFFLER, S ;
WINNACKER, EL ;
ZENK, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (18) :6838-6842