Atomic Layer Deposition of CdS Films

被引:63
作者
Bakke, Jonathan R. [1 ]
Jung, Hee Joon [2 ]
Tanskanen, Jukka T. [1 ,3 ]
Sinclair, Robert [2 ]
Bent, Stacey F. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Univ Eastern Finland, Dept Chem, Joensuu 80130, Finland
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; SOLID-STATE; ZNS; TRANSITION; GROWTH; ZINC;
D O I
10.1021/cm100874f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pure, polycrystalline CdS deposited by atomic layer deposition (ALD) on Si(100) or glass using dimethyl cadmium and in situ generated H2S is investigated in detail. This ALD system follows saturation behavior typical of ALD systems, and the growth rate monotonically decreases with temperature from 100 degrees C-300 degrees C; by 400 degrees C linear growth rate behavior is no longer seen. The crystal structure as determined by X-ray diffraction and transmission electron microscopy gradually transitions from zincblende to wurtzite with increasing temperature until the film is primarily wurtzite by 400 C. Further, the average grain size increases with temperature. Transmission electron microscopy images and selected area diffraction patterns confirm the presence of zincblende and wurtzite crystals because of stacking faults and demonstrate that {111} crystal planes are more oriented parallel to the substrate at lower temperatures. Ultraviolet-visible spectroscopy shows that the bandgap is 2.3-2.42 eV in the 100 degrees C-400 degrees C range with a slight increase occurring with temperature. The roughness of the films is found to increase both with temperature and cycle number as observed with atomic force microscopy and scanning electron microscopy. Density functional theory calculations were used to understand observations concerning the growth rate and the bandgap of the films deposited at different temperatures.
引用
收藏
页码:4669 / 4678
页数:10
相关论文
共 44 条
[21]   Studies of heteroepitaxial growth of thin II-VI semiconductor layers by sequential ultrahigh vacuum dosing [J].
Luo, Y ;
Han, M ;
Slater, DA ;
Osgood, RM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2000, 18 (02) :438-449
[22]   PROPERTIES OF CDS FILMS PREPARED BY SPRAY PYROLYSIS [J].
MA, YY ;
BUBE, RH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (09) :1430-1435
[23]   Chemical deposition method for metal chalcogenide thin films [J].
Mane, RS ;
Lokhande, CD .
MATERIALS CHEMISTRY AND PHYSICS, 2000, 65 (01) :1-31
[24]   Fabrication of low-dimension CdSe structures by atomic layer epitaxy [J].
Mikhaevich, DP ;
Ezhovskii, YK .
RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2003, 76 (08) :1197-1200
[25]   Properties of cadmium sulphide films grown by single-source metalorganic chemical vapour deposition with dithiocarbamate precursors [J].
OBrien, P ;
Walsh, JR ;
Watson, IM ;
Hart, L ;
Silva, SRP .
JOURNAL OF CRYSTAL GROWTH, 1996, 167 (1-2) :133-142
[26]  
Ohring M., 1992, The Materials Science of Thin Films
[27]   Why does the B3LYP hybrid functional fail for metals? [J].
Paier, Joachim ;
Marsman, Martijn ;
Kresse, Georg .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (02)
[28]   Benchmark study of DFT functionals for late-transition-metal reactions [J].
Quintal, MM ;
Karton, A ;
Iron, MA ;
Boese, AD ;
Martin, JML .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (02) :709-716
[29]   19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J].
Repins, Ingrid ;
Contreras, Miguel A. ;
Egaas, Brian ;
DeHart, Clay ;
Scharf, John ;
Perkins, Craig L. ;
To, Bobby ;
Noufi, Rommel .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :235-239
[30]  
Singh V, 2009, CHALCOGENIDE LETT, V6, P421