Applying a new quantitative global breast MRI feature analysis scheme to assess tumor response to chemotherapy

被引:63
作者
Aghaei, Faranak [1 ]
Tan, Maxine [1 ]
Hollingsworth, Alan B. [2 ]
Zheng, Bin [1 ]
机构
[1] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[2] Mercy Hlth Ctr, Mercy Womens Ctr, Oklahoma City, OK USA
基金
美国国家卫生研究院;
关键词
dynamic contrast-enhanced breast magnetic resonance imaging; tumor response to neoadjuvant chemotherapy; quantitative image feature analysis; assessment of breast cancer prognosis; bilateral asymmetry of parenchyma breast MR enhancement; IMAGE FEATURE ANALYSIS; PREOPERATIVE CHEMOTHERAPY; CANCER RISK; WOMEN; METAANALYSIS; NEOADJUVANT; MAMMOGRAPHY; LESIONS;
D O I
10.1002/jmri.25276
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop a new quantitative global kinetic breast magnetic resonance imaging (MRI) features analysis scheme and assess its feasibility to assess tumor response to neoadjuvant chemotherapy. Materials and MethodsA dataset involving breast MR images acquired from 151 cancer patients before neoadjuvant chemotherapy was used. Among them, 63 patients had complete response (CR) and 88 had partial response (PR) to chemotherapy based on the RECIST criterion. A computer-aided detection (CAD) scheme was applied to segment breast region depicted on the breast MR images and computed a total of 10 kinetic image features to represent parenchyma enhancement either from the entire two breasts or the bilateral asymmetry between the two breasts. To classify between CR and PR cases, we tested an attribution selected classifier that integrates with an artificial neural network and a Wrapper Subset Evaluator. The classifier was trained and tested using a leave-one-case-out (LOCO)-based cross-validation method. The area under a receiver operating characteristic curve (AUC) was computed to assess classifier performance. ResultsFrom the pool of initial 10 features, four features were selected by more than 90% times in the LOCO cross-validation iterations. Among them, three represent the bilateral asymmetry of kinetic features between two breasts. Using the classifier yielded AUC = 0.83 0.04, which is significantly higher than using each individual feature to classify between CR and PR cases (P < 0.05). ConclusionThis study demonstrated that quantitative analysis of global kinetic features computed from breast MRI-acquired prechemotherapy has potential to generate a useful clinical marker that is associated with tumor response to neoadjuvant chemotherapy. J. Magn. Reson. Imaging 2016;44:1099-1106.
引用
收藏
页码:1099 / 1106
页数:8
相关论文
共 24 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy [J].
Aghaei, Faranak ;
Tan, Maxine ;
Hollingsworth, Alan B. ;
Qian, Wei ;
Liu, Hong ;
Zheng, Bin .
MEDICAL PHYSICS, 2015, 42 (11) :6520-6528
[3]   Computerized Image Analysis for Identifying Triple-Negative Breast Cancers and Differentiating Them from Other Molecular Subtypes of Breast Cancer on Dynamic Contrast-enhanced MR Images: A Feasibility Study [J].
Agner, Shannon C. ;
Rosen, Mark A. ;
Englander, Sarah ;
Tomaszewski, John E. ;
Feldman, Michael D. ;
Zhang, Paul ;
Mies, Carolyn ;
Schnall, Mitchell D. ;
Madabhushi, Anant .
RADIOLOGY, 2014, 272 (01) :91-99
[4]  
[Anonymous], DATA MINING PRACTICA
[5]   Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk [J].
Berg, Wendie A. ;
Zhang, Zheng ;
Lehrer, Daniel ;
Jong, Roberta A. ;
Pisano, Etta D. ;
Barr, Richard G. ;
Boehm-Velez, Marcela ;
Mahoney, Mary C. ;
Evans, W. Phil, III ;
Larsen, Linda H. ;
Morton, Marilyn J. ;
Mendelson, Ellen B. ;
Farria, Dione M. ;
Cormack, Jean B. ;
Marques, Helga S. ;
Adams, Amanda ;
Yeh, Nolin M. ;
Gabrielli, Glenna .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (13) :1394-1404
[6]   Cancerous Breast Lesions on Dynamic Contrast-enhanced MR Images: Computerized Characterization for Image-based Prognostic Markers [J].
Bhooshan, Neha ;
Giger, Maryellen L. ;
Jansen, Sanaz A. ;
Li, Hui ;
Lan, Li ;
Newstead, Gillian M. .
RADIOLOGY, 2010, 254 (03) :680-690
[7]   Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI [J].
Chen, Weijie ;
Giger, Maryellen L. ;
Bick, Ulrich ;
Newstead, Gillian M. .
MEDICAL PHYSICS, 2006, 33 (08) :2878-2887
[8]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[9]   Effect of preoperative chemotherapy on the outcome of women with operable breast cancer [J].
Fisher, B ;
Bryant, J ;
Wolmark, N ;
Mamounas, E ;
Brown, A ;
Fisher, ER ;
Wickerham, DL ;
Begovic, M ;
DeCillis, A ;
Robidoux, A ;
Margolese, RG ;
Cruz, AB ;
Hoehn, JL ;
Lees, AW ;
Dimitrov, NV ;
Bear, HD .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (08) :2672-2685
[10]   Current Approaches and Challenges in Monitoring Treatment Responses in Breast Cancer [J].
Graham, Lindsey J. ;
Shupe, Matthew P. ;
Schneble, Erika J. ;
Flynt, Frederick L. ;
Clemenshaw, Michael N. ;
Kirkpatrick, Aaron D. ;
Gallagher, Chris ;
Nissan, Aviram ;
Henry, Leonard ;
Stojadinovic, Alexander ;
Peoples, George E. ;
Shumway, Nathan M. .
JOURNAL OF CANCER, 2014, 5 (01) :58-68