Cytobank: Providing an Analytics Platform for Community Cytometry Data Analysis and Collaboration

被引:92
作者
Chen, Tiffany J. [1 ]
Kotecha, Nikesh [1 ]
机构
[1] Cytobank Inc, Mountain View, CA 94040 USA
来源
HIGH-DIMENSIONAL SINGLE CELL ANALYSIS: MASS CYTOMETRY, MULTI-PARAMETRIC FLOW CYTOMETRY AND BIOINFORMATIC TECHNIQUES | 2014年 / 377卷
关键词
CELL MASS CYTOMETRY; FLOW-CYTOMETRY; VISUALIZATION; IDENTIFICATION; BIOCONDUCTOR; EXPRESSION; IMMUNE;
D O I
10.1007/82_2014_364
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.
引用
收藏
页码:127 / 157
页数:31
相关论文
共 44 条
[1]   Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays* [J].
Aghaeepour, Nima ;
Chattopadhyay, Pratip K. ;
Ganesan, Anuradha ;
O'Neill, Kieran ;
Zare, Habil ;
Jalali, Adrin ;
Hoos, Holger H. ;
Roederer, Mario ;
Brinkman, Ryan R. .
BIOINFORMATICS, 2012, 28 (07) :1009-1016
[2]   Rapid Cell Population Identification in Flow Cytometry Data [J].
Aghaeepour, Nima ;
Nikolic, Radina ;
Hoos, Holger H. ;
Brinkman, Ryan R. .
CYTOMETRY PART A, 2011, 79A (01) :6-13
[3]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[4]   The Universal Protein Resource (UniProt) in 2010 [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Antunes, Ricardo ;
Barrell, Daniel ;
Bely, Benoit ;
Bingley, Mark ;
Binns, David ;
Bower, Lawrence ;
Browne, Paul ;
Chan, Wei Mun ;
Dimmer, Emily ;
Eberhardt, Ruth ;
Fedotov, Alexander ;
Foulger, Rebecca ;
Garavelli, John ;
Huntley, Rachael ;
Jacobsen, Julius ;
Kleen, Michael ;
Laiho, Kati ;
Leinonen, Rasko ;
Legge, Duncan ;
Lin, Quan ;
Liu, Wudong ;
Luo, Jie ;
Orchard, Sandra ;
Patient, Samuel ;
Poggioli, Diego ;
Pruess, Manuela ;
Corbett, Matt ;
di Martino, Giuseppe ;
Donnelly, Mike ;
van Rensburg, Pieter ;
Bairoch, Amos ;
Bougueleret, Lydie ;
Xenarios, Ioannis ;
Altairac, Severine ;
Auchincloss, Andrea ;
Argoud-Puy, Ghislaine ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bolleman, Jerven ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D142-D148
[5]   HyperLog - A flexible log-like transform for negative, zero, and positive valued data [J].
Bagwell, CB .
CYTOMETRY PART A, 2005, 64A (01) :34-42
[6]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[7]   A Pipeline for Automated Analysis of Flow Cytometry Data: Preliminary Results on Lymphoma Sub-Type Diagnosis [J].
Bashashati, Ali ;
Lo, Kenneth ;
Gottardo, Raphael ;
Gascoyne, Randy D. ;
Weng, Andrew ;
Brinkman, Ryan .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :4945-+
[8]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[9]   Single-cell mass cytometry for analysis of immune system functional states [J].
Bjornson, Zach B. ;
Nolan, Garry P. ;
Fantl, Wendy J. .
CURRENT OPINION IN IMMUNOLOGY, 2013, 25 (04) :484-494
[10]   Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators [J].
Bodenmiller, Bernd ;
Zunder, Eli R. ;
Finck, Rachel ;
Chen, Tiffany J. ;
Savig, Erica S. ;
Bruggner, Robert V. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Sachs, Karen ;
Krutzik, Peter O. ;
Nolan, Garry P. .
NATURE BIOTECHNOLOGY, 2012, 30 (09) :858-U89