Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene

被引:62
作者
Pei, Longkai [1 ]
Jin, Qi [1 ]
Zhu, Zhiqiang [1 ]
Zhao, Qing [1 ]
Liang, Jing [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
关键词
graphene; three-dimensional; ice-template; metal oxide; sodium-ion battery; LITHIUM-ION BATTERIES; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; GRAPHITE OXIDE; SUPERIOR RATE; NANOCOMPOSITES; NANOSHEETS; ARCHITECTURES; COMPOSITES; CAPABILITY;
D O I
10.1007/s12274-014-0609-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3-4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm(3)center dot g(-1) and a high surface area of 470.5 m(2)center dot g(-1). In comparison, SnO2@3DG exhibited a pore volume of 0.321 cm(3)center dot g(-1) and a surface area of 237.7 m(2)center dot g(-1) with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA center dot h center dot g(-1) in the initial cycle, a reversible capacity of 432 mA center dot h center dot g(-1) after 200 cycles at 100 mA center dot g(-1) (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mA center dot h center dot g(-1) at a high rate of 800 mA center dot g(-1). This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 26 条
[1]   Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance [J].
Chen, Shuai ;
Wang, Miao ;
Ye, Jianfeng ;
Cai, Jinguang ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
NANO RESEARCH, 2013, 6 (04) :243-252
[2]   Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J].
Cheng, Fangyi ;
Wang, Hongbo ;
Zhu, Zhiqiang ;
Wang, Yan ;
Zhang, Tianran ;
Tao, Zhanliang ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3668-3675
[3]   SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries [J].
Cui, Lifeng ;
Shen, Jian ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2195-2201
[4]   Freeze-casting of porous ceramics: A review of current achievements and issues [J].
Deville, Sylvain .
ADVANCED ENGINEERING MATERIALS, 2008, 10 (03) :155-169
[5]   Intergrown Li2FeSiO4•LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries [J].
Gao, Haiyan ;
Hu, Zhe ;
Zhang, Kai ;
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL COMMUNICATIONS, 2013, 49 (29) :3040-3042
[6]   Graphene-based composites [J].
Huang, Xiao ;
Qi, Xiaoying ;
Boey, Freddy ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :666-686
[7]   Assembly of Tin Oxide/Graphene Nanosheets into 3D Hierarchical Frameworks for High-Performance Lithium Storage [J].
Huang, Yanshan ;
Wu, Dongqing ;
Han, Sheng ;
Li, Shuang ;
Xiao, Li ;
Zhang, Fan ;
Feng, Xinliang .
CHEMSUSCHEM, 2013, 6 (08) :1510-1515
[8]   SnO2/Graphene Composite with High Lithium Storage Capability for Lithium Rechargeable Batteries [J].
Kim, Haegyeom ;
Kim, Sung-Wook ;
Park, Young-Uk ;
Gwon, Hyeokjo ;
Seo, Dong-Hwa ;
Kim, Yuhee ;
Kang, Kisuk .
NANO RESEARCH, 2010, 3 (11) :813-821
[9]   Three-dimensional graphene architectures [J].
Li, Chun ;
Shi, Gaoquan .
NANOSCALE, 2012, 4 (18) :5549-5563
[10]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105