The two-boundary sine-Gordon model

被引:30
作者
Caux, JS [1 ]
Saleur, H
Siano, E
机构
[1] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
[2] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[4] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[5] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany
关键词
D O I
10.1016/j.nuclphysb.2003.08.039
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study in this paper the ground state energy of a free bosonic theory on a finite interval of length R with either a pair of sine-Gordon type or a pair of Kondo type interactions at each boundary. This problem has potential applications in condensed matter (current through superconductor-Luttinger liquid-superconductor junctions) as well as in open string theory (tachyon condensation). While the application of Bethe ansatz techniques to this problem is in principle well known, considerable technical difficulties are encountered. These difficulties arise mainly from the way the bare couplings are encoded in the reflection matrices, and require complex analytic continuations, which we carry out in detail in a few cases. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:411 / 461
页数:51
相关论文
共 34 条
[1]   Andreev scattering and Josephson current in a one-dimensional electron liquid [J].
Affleck, I ;
Caux, JS ;
Zagoskin, AM .
PHYSICAL REVIEW B, 2000, 62 (02) :1433-1445
[2]   A CURRENT-ALGEBRA APPROACH TO THE KONDO EFFECT [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1990, 336 (03) :517-532
[3]   Quantum brownian motion on a triangular lattice and c=2 boundary conformal field theory [J].
Affleck, I ;
Oshikawa, M ;
Saleur, H .
NUCLEAR PHYSICS B, 2001, 594 (03) :535-606
[4]   THE KONDO EFFECT, CONFORMAL FIELD-THEORY AND FUSION RULES [J].
AFFLECK, I ;
LUDWIG, AWW .
NUCLEAR PHYSICS B, 1991, 352 (03) :849-862
[5]   BOUNDARY SINE-GORDON INTERACTIONS AT THE FREE FERMION POINT [J].
AMEDURI, M ;
KONIK, R ;
LECLAIR, A .
PHYSICS LETTERS B, 1995, 354 (3-4) :376-382
[6]   Finite size effects in boundary sine-Gordon theory [J].
Bajnok, Z ;
Palla, L ;
Takács, G .
NUCLEAR PHYSICS B, 2002, 622 (03) :565-592
[7]  
BARDAKCI K, HEPTH0009214
[8]  
BASEILHAC P, HEPTH0208005
[9]   Quantum field theories in finite volume: Excited state energies [J].
Bazhanov, VV ;
Lukyanov, SL ;
Zamolodchikov, AB .
NUCLEAR PHYSICS B, 1997, 489 (03) :487-531
[10]  
Cardy J. L., 1988, CONFORMAL INVARIANCE