Variational problems with fractional derivatives: Euler-Lagrange equations

被引:118
作者
Atanackovic, T. M. [1 ]
Konjik, S. [2 ]
Pilipovic, S. [3 ]
机构
[1] Univ Novi Sad, Inst Mech, Fac Tech Sci, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Dept Agr Engn, Fac Agr, Novi Sad 21000, Serbia
[3] Univ Novi Sad, Dept Math, Fac Sci, Novi Sad 21000, Serbia
基金
奥地利科学基金会;
关键词
D O I
10.1088/1751-8113/41/9/095201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]   On a class of differential equations with left and right fractional derivatives [J].
Atanackovic, T. M. ;
Stankovic, B. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (07) :537-546
[5]   On a nonlinear distributed order fractional differential equation [J].
Atanackovic, Teodor M. ;
Oparnica, Ljubica ;
Pihpovic, Stevan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :590-608
[6]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[7]   Fractional Hamiltonian analysis of irregular systems [J].
Baleanu, Dumitru .
SIGNAL PROCESSING, 2006, 86 (10) :2632-2636
[8]  
Brunt BV., 2004, The Calculus of Variations
[9]   Nonconservative Lagrangian mechanics: a generalized function approach [J].
Dreisigmeyer, DW ;
Young, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30) :8297-8310
[10]  
DREISIGMEYER DW, 2003, MATH GEN, V37, P117