Quantum cascade lasers grown by metalorganic vapor phase epitaxy

被引:48
作者
Roberts, JS
Green, RP [1 ]
Wilson, LR
Zibik, EA
Revin, DG
Cockburn, JW
Airey, RJ
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Sheffield, Dept Elect & Elect Engn, EPSRC Natl Ctr III V Technol, Sheffield S1 3JD, S Yorkshire, England
[3] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603600, Russia
关键词
D O I
10.1063/1.1583858
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the growth of GaAs-based quantum cascade lasers using atmospheric pressure metalorganic vapor phase epitaxy. The necessary control of interface abruptness and layer thickness uniformity throughout the structure has been achieved using a horizontal reactor in combination with individually purged vent/run valves. A low-temperature threshold current density of 10 kA/cm(2) and maximum operating temperature of 140 K have been measured. These performance levels are comparable with early GaAs-based devices grown using molecular-beam epitaxy. The measured emission wavelength (lambdasimilar to11.8 mum) is approximately 3-mum longer than the calculated transition wavelength, which we explain using a model incorporating compositional grading of the active region barriers. (C) 2003 American Institute of Physics.
引用
收藏
页码:4221 / 4223
页数:3
相关论文
共 10 条
[1]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[2]   Lasing properties of GaAs/(Al,Ga)As quantum-cascade lasers as a function of injector doping density [J].
Giehler, M ;
Hey, R ;
Kostial, H ;
Cronenberg, S ;
Ohtsuka, T ;
Schrottke, L ;
Grahn, HT .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :671-673
[3]   Ultra-broadband semiconductor laser [J].
Gmachl, C ;
Sivco, DL ;
Colombelli, R ;
Capasso, F ;
Cho, AY .
NATURE, 2002, 415 (6874) :883-887
[4]   Room temperature GaAs-based quantum cascade laser with GaInP waveguide cladding [J].
Green, RP ;
Wilson, LR ;
Carder, DA ;
Cockburn, JW ;
Hopkinson, M ;
Steer, MJ ;
Airey, RJ ;
Hill, G .
ELECTRONICS LETTERS, 2002, 38 (24) :1539-1541
[5]   Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler [J].
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
APPLIED PHYSICS LETTERS, 2001, 78 (14) :1964-1966
[6]   300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm [J].
Page, H ;
Becker, C ;
Robertson, A ;
Glastre, G ;
Ortiz, V ;
Sirtori, C .
APPLIED PHYSICS LETTERS, 2001, 78 (22) :3529-3531
[7]   FACTORS INFLUENCING DOPING CONTROL AND ABRUPT METALLURGICAL TRANSITIONS DURING ATMOSPHERIC-PRESSURE MOVPE GROWTH OF ALGAAS AND GAAS [J].
ROBERTS, JS ;
MASON, NJ ;
ROBINSON, M .
JOURNAL OF CRYSTAL GROWTH, 1984, 68 (01) :422-430
[8]   Low-loss Al-free waveguides for unipolar semiconductor lasers [J].
Sirtori, C ;
Kruck, P ;
Barbieri, S ;
Page, H ;
Nagle, J ;
Beck, M ;
Faist, J ;
Oesterle, U .
APPLIED PHYSICS LETTERS, 1999, 75 (25) :3911-3913
[9]   GaAs/AlxGa1-x as quantum cascade lasers [J].
Sirtori, C ;
Kruck, P ;
Barbieri, S ;
Collot, P ;
Nagle, J ;
Beck, M ;
Faist, J ;
Oesterle, U .
APPLIED PHYSICS LETTERS, 1998, 73 (24) :3486-3488
[10]   Gas-source molecular beam epitaxy growth of an 8.5 mu m quantum cascade laser [J].
Slivken, S ;
Jelen, C ;
Rybaltowski, A ;
Diaz, J ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 1997, 71 (18) :2593-2595