Ultrathick, low-stress nanostructured diamond films -: art. no. 221914

被引:13
作者
Kucheyev, SO [1 ]
Biener, J
Tringe, JW
Wang, YM
Mirkarimi, PB
van Buuren, T
Baker, SL
Hamza, AV
Brühne, K
Fecht, HJ
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Ulm, Div Mat, D-89081 Ulm, Germany
关键词
D O I
10.1063/1.1943492
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe a hot-filament chemical vapor deposition process for growing freestanding nanostructured diamond films, similar to 80 mu m thick, with residual tensile stress levels less than or similar to 90 MPa. We characterize the film microstructure, mechanical properties, chemical bond distribution, and elemental composition. Results show that our films are nanostructured with columnar grain diameters of less than or similar to 150 nm and a highly variable grain length along the growth direction of similar to 50-1500 nm. These films have a rms surface roughness of less than or similar to 200 nm for a 300x400 mu m(2) scan, which is about one order of magnitude lower than the roughness of typical microcrystalline diamond films of comparable thickness. Soft x-ray absorption near-edge structure (XANES) spectroscopy indicates a large percentage of sp(3) bonding in the films, consistent with a high hardness of 66 GPa. Nanoindentation and XANES results are also consistent with a high phase and elemental purity of the films, directly measured by x-ray and electron diffraction, Rutherford backscattering spectrometry, and elastic recoil detection analysis. Cross-sectional transmission electron microscopy reveals a large density of planar defects within the grains, suggesting a high rate of secondary nucleation during film growth. These films represent a new class of smooth, ultrathick nanostructured diamond. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 23 条
[1]   HIGH-RESOLUTION ELECTRON-ENERGY-LOSS SPECTROSCOPIC STUDY OF EPITAXIALLY GROWN DIAMOND (111) AND (100) SURFACES [J].
AIZAWA, T ;
ANDO, T ;
KAMO, M ;
SATO, Y .
PHYSICAL REVIEW B, 1993, 48 (24) :18348-18351
[2]   Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films [J].
Bhattacharyya, S ;
Auciello, O ;
Birrell, J ;
Carlisle, JA ;
Curtiss, LA ;
Goyette, AN ;
Gruen, DM ;
Krauss, AR ;
Schlueter, J ;
Sumant, A ;
Zapol, P .
APPLIED PHYSICS LETTERS, 2001, 79 (10) :1441-1443
[3]   Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond [J].
Birrell, J ;
Carlisle, JA ;
Auciello, O ;
Gruen, DM ;
Gibson, JM .
APPLIED PHYSICS LETTERS, 2002, 81 (12) :2235-2237
[4]   INTERACTION OF ATOMIC-HYDROGEN WITH THE DIAMOND C(111) SURFACE STUDIED BY INFRARED-VISIBLE SUM-FREQUENCY-GENERATION SPECTROSCOPY [J].
CHIN, RP ;
HUANG, JY ;
SHEN, YR ;
CHUANG, TJ ;
SEKI, H .
PHYSICAL REVIEW B, 1995, 52 (08) :5985-5995
[5]   Local order in CVD diamond films: Comparative Raman, x-ray-diffraction, and x-ray-absorption near-edge studies [J].
Fayette, L ;
Marcus, B ;
Mermoux, M ;
Tourillon, G ;
Laffon, K ;
Parent, P ;
Le Normand, F .
PHYSICAL REVIEW B, 1998, 57 (22) :14123-14132
[6]  
Funer M, 1998, APPL PHYS LETT, V72, P1149, DOI 10.1063/1.120997
[7]   Electrical contacts to ultrananocrystalline diamond [J].
Gerbi, JE ;
Auciello, O ;
Birrell, J ;
Gruen, DM ;
Alphenaar, BW ;
Carlisle, JA .
APPLIED PHYSICS LETTERS, 2003, 83 (10) :2001-2003
[8]   Nanocrystalline diamond films [J].
Gruen, DM .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 :211-259
[9]   Temperature-dependent emptying of grain-boundary charge traps in chemical vapor deposited diamond [J].
Hearne, SM ;
Jamieson, DN ;
Trajkov, E ;
Prawer, S ;
Butler, JE .
APPLIED PHYSICS LETTERS, 2004, 84 (22) :4493-4495
[10]   FIRST EXPERIMENTAL RESULTS FROM IBM/TENN/TULANE/LLNL/LBL UNDULATOR BEAMLINE AT THE ADVANCED LIGHT-SOURCE [J].
JIA, JJ ;
CALLCOTT, TA ;
YURKAS, J ;
ELLIS, AW ;
HIMPSEL, FJ ;
SAMANT, MG ;
STOHR, J ;
EDERER, DL ;
CARLISLE, JA ;
HUDSON, EA ;
TERMINELLO, LJ ;
SHUH, DK ;
PERERA, RCC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (02) :1394-1397