Structure and compatibility of a magnesium electrolyte with a sulphur cathode

被引:586
作者
Kim, Hee Soo [1 ]
Arthur, Timothy S. [1 ]
Allred, Gary D. [2 ]
Zajicek, Jaroslav [3 ]
Newman, John G. [4 ]
Rodnyansky, Alexander E. [4 ]
Oliver, Allen G. [3 ]
Boggess, William C. [3 ]
Muldoon, John [1 ]
机构
[1] Toyota Res Inst N Amer, Ann Arbor, MI 48105 USA
[2] Synthonix, Wake Forest, NC USA
[3] Univ Notre Dame, Notre Dame, IN 46556 USA
[4] Evans Analyt Grp, Chanhassen, MN 55317 USA
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
关键词
BATTERIES; ELECTROCHEMISTRY; SURFACE;
D O I
10.1038/ncomms1435
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnesium metal is an ideal rechargeable battery anode material because of its high volumetric energy density, high negative reduction potential and natural abundance. Coupling Mg with high capacity, low-cost cathode materials such as electrophilic sulphur is only possible with a non-nucleophilic electrolyte. Here we show how the crystallization of the electrochemically active species formed from the reaction between hexamethyldisilazide magnesium chloride and aluminum trichloride enables the synthesis of a non-nucleophilic electrolyte. Furthermore, crystallization was essential in the identification of the electroactive species, [Mg(2)(mu-Cl)(3)center dot(6)THF](+), and vital to improvements in the voltage stability and coulombic efficiency of the electrolyte. X-ray photoelectron spectroscopy analysis of the sulphur electrode confirmed that the electrochemical conversion between sulphur and magnesium sulfide can be successfully performed using this electrolyte.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[3]   Nonaqueous magnesium electrochemistry and its application in secondary batteries [J].
Aurbach, D ;
Weissman, I ;
Gofer, Y ;
Levi, E .
CHEMICAL RECORD, 2003, 3 (01) :61-73
[4]   The study of reversible magnesium deposition by in situ scanning tunneling microscopy [J].
Aurbach, D ;
Cohen, Y ;
Moshkovich, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (08) :A113-A116
[5]   Progress in rechargeable magnesium battery technology [J].
Aurbach, Doron ;
Suresh, Gurukar Shivappa ;
Levi, Elena ;
Mitelman, Ariel ;
Mizrahi, Oren ;
Chusid, Orit ;
Brunelli, Michela .
ADVANCED MATERIALS, 2007, 19 (23) :4260-+
[6]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[7]  
*BRUK NON AXS, 2010, APEX2 2010 7 SAINT V
[8]   Effect of electrolyte composition on lithium dendrite growth [J].
Crowther, Owen ;
West, Alan C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (11) :A806-A811
[9]   A selective synthesis of the 1,3,4-triphospholide anion [J].
Fish, C ;
Green, M ;
Jeffery, JC ;
Kilby, RJ ;
Lynam, JM ;
Russell, CA ;
Willans, CE .
ORGANOMETALLICS, 2005, 24 (24) :5789-5791
[10]   Alkyl group transmetalation reactions in electrolytic solutions studied by multinuclear NMR [J].
Gizbar, H ;
Vestfrid, Y ;
Chusid, O ;
Gofer, Y ;
Gottlieb, HE ;
Marks, V ;
Aurbach, D .
ORGANOMETALLICS, 2004, 23 (16) :3826-3831