Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental source molecular beam epitaxy

被引:107
作者
Spruytte, SG
Larson, MC
Wampler, W
Coldren, CW
Petersen, HE
Harris, JS
机构
[1] Stanford Univ, Solid State & Photon Lab, Dept Elect Engn, CISX, Stanford, CA 94305 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Agil Commun, Santa Barbara, CA USA
[4] Sandia Natl Labs, Radiat Solid Interact & Proc Dept 1111, Albuquerque, NM 87185 USA
关键词
characterization; defects; diffusion; molecular beam epitaxy; semiconducting IIIV materials; laser diodes;
D O I
10.1016/S0022-0248(01)00757-6
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Group III-nitride-arsenides are promising materials for long wavelength opto-electronic: devices grown on GaAs substrates. The growth of nitride-arsenides was performed in an elemental solid source molecular beam epitaxy system with a plasma cell to supply reactive nitrogen. Growth is carried out with plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen, as determined from the emission spectrum of the plasma. The group III growth rate controls the nitrogen concentration in the film. The photoluminescence intensity of GaNAs and GaInNAs quantum wells (QWs) increases drastically and shifts to shorter wavelengths following high temperature anneal. Nitrogen diffusion out of the QWs is responsible for the wavelength shift, We observe a decrease of interstitial nitrogen after anneal. Vertical-cavity surface-emitting lasers with GaInNAs QWs demonstrated a continous-wave operation, To limit nitrogen diffusion, the GaAs barriers surrounding the GaInNAs: QWs were replaced by GaNAs barriers, This new active region resulted in devices emitting at 1.3 mum, (C) 2001 Elsevier Science B,V, All rights reserved.
引用
收藏
页码:506 / 515
页数:10
相关论文
共 23 条
[1]  
ALLERMAN AA, 1999, 1999 MRS FALL M BOST
[2]   Diffusion of nitrogen from a buried doping layer in gallium arsenide revealing the prominent role of as interstitials [J].
Bosker, G ;
Stolwijk, NA ;
Thordson, JV ;
Sodervall, U ;
Andersson, TG .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3443-3446
[3]   Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm [J].
Choquette, KD ;
Klem, JF ;
Fischer, AJ ;
Blum, O ;
Allerman, AA ;
Fritz, IJ ;
Kurtz, SR ;
Breiland, WG ;
Sieg, R ;
Geib, KM ;
Scott, JW ;
Naone, RL .
ELECTRONICS LETTERS, 2000, 36 (16) :1388-1390
[4]   1200nm GaAs-based vertical cavity lasers employing GaInNAs multiquantum well active regions [J].
Coldren, CW ;
Larson, MC ;
Spruytte, SG ;
Harris, JS .
ELECTRONICS LETTERS, 2000, 36 (11) :951-952
[5]   Photocurrent of 1 eV GaInNAs lattice-matched to GaAs [J].
Geisz, JF ;
Friedman, DJ ;
Olson, JM ;
Kurtz, SR ;
Keyes, BM .
JOURNAL OF CRYSTAL GROWTH, 1998, 195 (1-4) :401-408
[6]   Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers [J].
Kirchner, V ;
Heinke, H ;
Birkle, U ;
Einfeldt, S ;
Hommel, D ;
Selke, H ;
Ryder, PL .
PHYSICAL REVIEW B, 1998, 58 (23) :15749-15755
[7]   Group V incorporation in InGaAsP grown on InP by gas source molecular beam epitaxy [J].
LaPierre, RR ;
Robinson, BJ ;
Thompson, DA .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (06) :3021-3027
[8]   Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers [J].
Larson, MC ;
Coldren, CW ;
Spruytte, SG ;
Petersen, HE ;
Harris, JS .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (12) :1598-1600
[9]   Incorporation of group V elements in GaxIn1-xAsyP1-y grown by gas source molecular beam epitaxy [J].
Lee, TL ;
Liu, JS ;
Lin, HH .
JOURNAL OF ELECTRONIC MATERIALS, 1996, 25 (09) :1469-1473
[10]   CBE and MOCVD growth of GaInNAs [J].
Miyamoto, T ;
Kageyama, T ;
Makino, S ;
Schlenker, D ;
Koyama, F ;
Iga, K .
JOURNAL OF CRYSTAL GROWTH, 2000, 209 (2-3) :339-344