Spin gases:: Quantum entanglement driven by classical kinematics -: art. no. 180502

被引:36
作者
Calsamiglia, J
Hartmann, L
Dür, W
Briegel, HJ
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenoptik & Quanteninformat, Innsbruck, Austria
关键词
D O I
10.1103/PhysRevLett.95.180502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A spin gas is a natural extension of a classical gas. It consists of a large number of particles whose (random) motion is described classically, but, in addition, have internal (quantum mechanical) degrees of freedom that interact during collisions. For specific types of quantum interactions we determine the entanglement that occurs naturally in such systems. We analyze how the evolution of the quantum state is determined by the underlying classical kinematics of the gas. For the Boltzmann gas, we calculate the rate at which entanglement is produced and characterize the entanglement properties of the equilibrium state.
引用
收藏
页数:4
相关论文
共 20 条
[11]   Scaling of entanglement close to a quantum phase transition [J].
Osterloh, A ;
Amico, L ;
Falci, G ;
Fazio, R .
NATURE, 2002, 416 (6881) :608-610
[12]   AVERAGE ENTROPY OF A SUBSYSTEM [J].
PAGE, DN .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1291-1294
[13]   Entanglement versus correlations in spin systems [J].
Verstraete, F ;
Popp, M ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2004, 92 (02) :4-279014
[14]  
VERSTRAETE F, 2005, PHYS REV LETT, V92, P7901
[15]  
Verstraete F., CONDMAT0407066
[16]   Efficient simulation of one-dimensional quantum many-body systems [J].
Vidal, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :040502-1
[17]   Efficient classical simulation of slightly entangled quantum computations [J].
Vidal, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)
[18]   Entanglement in quantum critical phenomena [J].
Vidal, G ;
Latorre, JI ;
Rico, E ;
Kitaev, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (22) :4-227902
[19]   Collective dynamics of 'small-world' networks [J].
Watts, DJ ;
Strogatz, SH .
NATURE, 1998, 393 (6684) :440-442
[20]   All-multipartite Bell-correlation inequalities for two dichotomic observables per site [J].
Werner, RF ;
Wolf, MM .
PHYSICAL REVIEW A, 2001, 64 (03) :10