Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Graphene

被引:58
作者
Jo, Insun [2 ]
Hsu, I-Kai [3 ]
Lee, Yong J. [1 ,6 ]
Sadeghi, Mir Mohammad [1 ]
Kim, Seyoung [4 ]
Cronin, Stephen [5 ]
Tutuc, Emanuel [4 ]
Banerjee, Sanjay K. [4 ]
Yao, Zhen [2 ]
Shi, Li [1 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Univ So Calif, Dept Mat Sci & Engn, Los Angeles, CA 90089 USA
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[5] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[6] Kyungpook Natl Univ, Sch Mech Engn, Taegu 702701, South Korea
基金
美国国家科学基金会;
关键词
Graphene; electrical heating; scanning thermal microscopy; acoustic phonons; Raman spectroscopy; THERMAL-CONDUCTIVITY; THIN-FILMS; TRANSISTORS; SILICON; SUBSTRATE; TRANSPORT;
D O I
10.1021/nl102858c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
On the basis of scanning thermal microscopy (SThM) measurements in contact and lift modes, the low-frequency acoustic phonon temperature in electrically biased, 6.7-9.7 mu m long graphene channels is found to be in equilibrium with the anharmonic scattering temperature determined from the Raman 2D peak position. With similar to 100 nm scale spatial resolution, the SThM reveals the shifting of local hot spots corresponding to low-carrier concentration regions with the bias and gate voltages in these much shorter samples than those exhibiting similar behaviors in the infrared emission maps.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 28 条
[1]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[2]   Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices [J].
Bae, Myung-Ho ;
Ong, Zhun-Yong ;
Estrada, David ;
Pop, Eric .
NANO LETTERS, 2010, 10 (12) :4787-4793
[3]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[4]   Electron and Optical Phonon Temperatures in Electrically Biased Graphene [J].
Berciaud, Stephane ;
Han, Melinda Y. ;
Mak, Kin Fai ;
Brus, Louis E. ;
Kim, Philip ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[5]   Phonon anharmonicities in graphite and graphene [J].
Bonini, Nicola ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[6]   Interface thermal conductance and the thermal conductivity of multilayer thin films [J].
Cahill, DG ;
Bullen, A ;
Lee, SM .
HIGH TEMPERATURES-HIGH PRESSURES, 2000, 32 (02) :135-142
[7]   Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices [J].
Calizo, I. ;
Miao, F. ;
Bao, W. ;
Lau, C. N. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (07)
[8]   Hot Phonons in an Electrically Biased Graphene Constriction [J].
Chae, Dong-Hun ;
Krauss, Benjamin ;
von Klitzing, Klaus ;
Smet, Jurgen H. .
NANO LETTERS, 2010, 10 (02) :466-471
[9]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[10]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215