Feature sensitive mesh segmentation with mean shift

被引:74
作者
Yamauchi, H [1 ]
Lee, S [1 ]
Lee, Y [1 ]
Ohtake, Y [1 ]
Belyaev, A [1 ]
Seidel, HP [1 ]
机构
[1] MPI Informat, Saarbrucken, Germany
来源
INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDINGS | 2005年
关键词
D O I
10.1109/SMI.2005.21
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Feature sensitive mesh segmentation is important for many computer graphics and geometric modeling applications. In this paper we develop a mesh segmentation method which is capable of producing high-quality shape partitioning. It respects fine shape features and works well on various types of shapes, including natural shapes and mechanical parts. The method combines a procedure for clustering mesh normals with a modification of the mesh chartification technique in [23]. For clustering of mesh normals, we adopt Mean Shift, a powerful general purpose technique for clustering scattered data. We demonstrate advantages of our method by comparing it with two state-of-the-art mesh segmentation techniques.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 30 条
[1]   MDL principle for robust vector quantisation [J].
Bischof, H ;
Leonardis, A ;
Selb, A .
PATTERN ANALYSIS AND APPLICATIONS, 1999, 2 (01) :59-72
[2]   MEAN SHIFT, MODE SEEKING, AND CLUSTERING [J].
CHENG, YZ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) :790-799
[3]   Variational shape approximation [J].
Cohen-Steiner, D ;
Alliez, P ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :905-914
[4]   Mean shift: A robust approach toward feature space analysis [J].
Comaniciu, D ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) :603-619
[5]  
Dey TK, 2003, LECT NOTES COMPUT SC, V2748, P25
[6]  
FUKUNAGA K, 1975, IEEE T INFORM THEORY, V21, P32, DOI 10.1109/TIT.1975.1055330
[7]   Modeling by example [J].
Funkhouser, T ;
Kazhdan, M ;
Shilane, P ;
Min, P ;
Kiefer, W ;
Tal, A ;
Rusinkiewicz, S ;
Dobkin, D .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :652-663
[8]  
Garland M, 2001, P ACM S INT 3D GRAPH, P49, DOI DOI 10.1145/364338.364345
[9]   Non-iterative, feature-preserving mesh smoothing [J].
Jones, TR ;
Durand, F ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :943-949
[10]  
Ju T, 2002, ACM T GRAPHIC, V21, P339