Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes

被引:66
作者
Takizawa, Kenji [1 ]
Moorman, Creighton [1 ]
Wright, Samuel [1 ]
Spielman, Timothy [1 ]
Tezduyar, Tayfun E. [1 ]
机构
[1] Rice Univ, Team Adv Flow Simulat & Modeling T AFSM, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Orion spacecraft; ringsail parachute; geometric porosity; design configurations; fluid-structure interaction; periodic four-gore model; space-time finite elements; FINITE-ELEMENT COMPUTATION; MOVING BOUNDARY FLOWS; INCOMPRESSIBLE FLOWS; NUMERICAL-SIMULATION; INTERFACE-TRACKING; CEREBRAL ANEURYSM; TIME PROCEDURE; FORMULATION; SYSTEMS; SCHEME;
D O I
10.1002/fld.2348
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We focus on fluid-structure interaction (FSI) modeling and performance analysis of the ringsail parachutes to be used with the Orion spacecraft. We address the computational challenges with the latest techniques developed by the T star AFSM (Team for Advanced Flow Simulation and Modeling) in conjunction with the SSTFSI (Stabilized Space-Time Fluid-Structure Interaction) technique. The challenges involved in FSI modeling include the geometric porosity of the ringsail parachutes with ring gaps and sail slits. We investigate the performance of three possible design configurations of the parachute canopy. We also describe the techniques developed recently for building a consistent starting condition for the FSI computations, discuss rotational periodicity techniques for improving the geometric-porosity modeling, and introduce a new version of the HMGP (Homogenized Modeling of Geometric Porosity). Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:271 / 285
页数:15
相关论文
共 73 条
[1]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[2]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322
[3]   A fully-coupled fluid-structure interaction simulation of cerebral aneurysms [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Zhang, Y. ;
Wang, W. ;
Liang, X. ;
Kvamsdal, T. ;
Brekken, R. ;
Isaksen, J. G. .
COMPUTATIONAL MECHANICS, 2010, 46 (01) :3-16
[4]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[5]   Computational fluid-structure interaction: methods and application to a total cavopulmonary connection [J].
Bazilevs, Yuri ;
Hsu, M. -C. ;
Benson, D. J. ;
Sankaran, S. ;
Marsden, A. L. .
COMPUTATIONAL MECHANICS, 2009, 45 (01) :77-89
[6]  
Bletzinger K.-U., 2006, Lecture Notes in Computational Science and Engineering, V53, P336
[7]  
Brenk M, 2006, LECT NOTES COMPUTATI, V53, P233
[8]   A computational framework for fluid-structure interaction: Finite element formulation and applications [J].
Dettmer, W. ;
Peric, D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5754-5779
[9]   On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction [J].
Dettmer, Wulf G. ;
Peric, Djordje .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :81-90
[10]   Fluid-structure interaction in blood flows on geometries based on medical imaging [J].
Gerbeau, JF ;
Vidrascu, M ;
Frey, P .
COMPUTERS & STRUCTURES, 2005, 83 (2-3) :155-165