A System for the Estimation of Single-Tree Stem Diameter and Volume Using Multireturn LIDAR Data

被引:56
作者
Dalponte, Michele [1 ,2 ]
Bruzzone, Lorenzo [1 ]
Gianelle, Damiano [2 ]
机构
[1] Univ Trent, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[2] Fdn Edmund Mach, Ist Agr San Michele AllAdige, Res & Innovat Ctr, Environm & Nat Resources Area, I-38010 San Michele All Adige, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2011年 / 49卷 / 07期
关键词
Forestry; multireturn light detection and ranging (LIDAR); remote sensing; stem volume estimation; support vector regression (SVR); tree diameter estimation; INDIVIDUAL TREES; FOREST BIOMASS; CROWN DIAMETER; SVM REGRESSION; SELECTION; HEIGHT; PARAMETERS;
D O I
10.1109/TGRS.2011.2107744
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Forest inventories are important tools for the management of forests. In this context, the estimation of the tree stem volume is a key issue. In this paper, we present a system for the estimation of forest stem diameter and volume at individual tree level from multireturn light detection and ranging (LIDAR) data. The proposed system is made up of a preprocessing module, a LIDAR segmentation algorithm (aimed at retrieving tree crowns), a variable extraction and selection procedure, and an estimation module based on support vector regression (SVR) (which is compared with a multiple linear regression technique). The variables derived from LIDAR data are computed from both the intensity and elevation channels of all available returns. Three different methods of variable selection are analyzed, and the sets of variables selected are used in the estimation phase. The stem volume is estimated with two methods: 1) direct estimation from the LIDAR variables and 2) combination of diameters and heights estimated from LIDAR variables with the species information derived from a classification map according to standard height/diameter relationships. Experimental results show that the system proposed is effective and provides high accuracies in both the stem volume and diameter estimations. Moreover, this paper provides useful indications on the effectiveness of SVR with LIDAR in forestry problems.
引用
收藏
页码:2479 / 2490
页数:12
相关论文
共 36 条
[11]   Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05) :1416-1427
[12]   Analysis on the Use of Multiple Returns LiDAR Data for the Estimation of Tree Stems Volume [J].
Dalponte, Michele ;
Coops, Nicholas C. ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2009, 2 (04) :310-318
[13]   A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments [J].
Evans, Jeffrey S. ;
Hudak, Andrew T. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (04) :1029-1038
[14]   Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data [J].
Falkowski, Michael J. ;
Smith, Alistair M. S. ;
Hudak, Andrew T. ;
Gessler, Paul E. ;
Vierling, Lee A. ;
Crookston, Nicholas L. .
CANADIAN JOURNAL OF REMOTE SENSING, 2006, 32 (02) :153-161
[15]  
GUAJARDO J, 2005, P 5 INT C HYBR INT S, V6, P341
[16]  
Guyon I., 2003, J MACH LEARN RES, V3, P1157
[17]   Estimation of Urban Green Volume Based on Single-Pulse LiDAR Data [J].
Hecht, Robert ;
Meinel, Gotthard ;
Buchroithner, Manfred F. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3832-3840
[18]   Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park [J].
Heurich, Marco .
FOREST ECOLOGY AND MANAGEMENT, 2008, 255 (07) :2416-2433
[19]   Measurement of canopy geometry characteristics using LiDAR laser altimetry: A feasibility study [J].
Houldcroft, CJ ;
Campbell, CL ;
Davenport, IJ ;
Gurney, RJ ;
Holden, N .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (10) :2270-2282
[20]   A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners [J].
Hyyppä, J ;
Kelle, O ;
Lehikoinen, M ;
Inkinen, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (05) :969-975