Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation

被引:54
作者
Yang, Y.
Tay, B. K.
Sun, X. W.
Sze, J. Y.
Han, Z. J.
Wang, J. X.
Zhang, X. H.
Li, Y. B.
Zhang, S.
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Inst Mat Res & Engn, Singapore 117602, Singapore
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
关键词
D O I
10.1063/1.2772668
中图分类号
O59 [应用物理学];
学科分类号
摘要
Surface modification of ZnO nanocombs was performed through a Ti plasma immersion ion implantation (PIII) with low bias voltages ranging from 0 to 5 kV to quench surface-originated exciton emission. The ion energy dependent surface modification on ZnO was investigated using transmission electron microscopy and temperature-dependent photoluminescence (PL). The surface exciton (SX) was clearly identified for the as-grown sample at 4.5 K, and complete quenching was observed for sample treated with 5 kV PIII due to surface state passivation. The SX related surface states were located within 5 nm in depth from the surface corresponding to the implantation depth of 5 kV PIII. Room-temperature PL enhancement of these surface-modified ZnO nanocombs was observed and discussed. The results show that PIII can become a viable technique for nanostructure surface passivation. (C) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 20 条
[1]   Metal ion implantation using a filtered cathodic vacuum arc [J].
Bilek, MMM ;
Evans, P ;
Mckenzie, DR ;
McCulloch, DG ;
Zreiqat, H ;
Howlett, CR .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :4198-4204
[2]   Plasma immersion ion implantation - A fledgling technique for semiconductor processing [J].
Chu, PK ;
Qin, S ;
Chan, C ;
Cheung, NW ;
Larson, LA .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1996, 17 (6-7) :207-280
[3]   Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems:: Limiting effects on device potential -: art. no. 115439 [J].
Grabowska, J ;
Meaney, A ;
Nanda, KK ;
Mosnier, JP ;
Henry, MO ;
Duclère, JR ;
McGlynn, E .
PHYSICAL REVIEW B, 2005, 71 (11)
[4]   ZnO-based transparent thin-film transistors [J].
Hoffman, RL ;
Norris, BJ ;
Wager, JF .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :733-735
[5]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[6]   Nano-scale distribution of ZnO free exciton luminescence in ZnO: Zn microcrystals and its modification under electron beam excitation [J].
Ichimiya, Masayoshi ;
Horii, Taku ;
Hirai, Takeshi ;
Sawada, Yuji ;
Minamiguchi, Masaru ;
Ohno, Nobuhito ;
Ashida, Masaaki ;
Itoh, Tadashi .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (06) :1967-1975
[7]   Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite [J].
Liu, XY ;
Zhao, XB ;
Fu, RKY ;
Ho, JPY ;
Ding, CX ;
Chu, PK .
BIOMATERIALS, 2005, 26 (31) :6143-6150
[8]   Plasma-blased ion implantation and deposition: A review of physics, technology, and applications [J].
Pelletier, J ;
Anders, A .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (06) :1944-1959
[9]   Manganese-doped ZnO nanobelts for spintronics [J].
Ronning, C ;
Gao, PX ;
Ding, Y ;
Wang, ZL ;
Schwen, D .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :783-785
[10]   Size-dependent surface luminescence in ZnO nanowires [J].
Shalish, I ;
Temkin, H ;
Narayanamurti, V .
PHYSICAL REVIEW B, 2004, 69 (24) :245401-1