Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control

被引:196
作者
Wright, JA
Keegan, KS
Herendeen, DR
Bentley, NJ
Carr, AM
Hoekstra, MF
Concannon, P
机构
[1] Univ Washington, Sch Med, Dept Immunol, Seattle, WA 98195 USA
[2] Virginia Mason Res Ctr, Seattle, WA 98101 USA
[3] ICOS Corp, Bothell, WA 98021 USA
[4] Univ Sussex, MRC, Cell Mutat Unit, Brighton BN1 9RR, E Sussex, England
关键词
D O I
10.1073/pnas.95.13.7445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In fission yeast, the rad3 gene product plays a critical role in sensing DNA structure defects and activating damage response pathways, A structural homologue of rad3 in humans (ATR) has been identified based on sequence similarity in the protein kinase domain. General information regarding ATR expression, protein kinase activity, and cellular localization is known, but its function in human cells remains undetermined. In the current study, the ATR protein was examined by gel filtration of protein extracts and was found to exist predominantly as part of a large protein complex. A kinase-inactivated form of the ATR gene was prepared by site-directed mutagenesis and was used in transfection experiments to probe the function of this complex, Introduction of this kinase-dead ATR into a normal fibroblast cell line, an ATM-deficient fibroblast line derived from a patient with ataxia-telangiectasia, or a p53 mutant cell line all resulted in significant losses in cell viability. Clones expressing the kinase-dead ATR displayed increased sensitivity to x-rays and UV and a loss of checkpoint control. We conclude that ATR functions as a critical part of a protein complex that mediates responses to ionizing and UV radiation in human cells. These responses include effects on cell viability and cell cycle checkpoint control.
引用
收藏
页码:7445 / 7450
页数:6
相关论文
共 22 条
  • [1] RADIOSENSITIVITY IN ATAXIA-TELANGIECTASIA - ANOMALIES IN RADIATION-INDUCED CELL-CYCLE DELAY
    BEAMISH, H
    LAVIN, MF
    [J]. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1994, 65 (02) : 175 - 184
  • [2] The Schizosaccharomyces pombe rad3 checkpoint gene
    Bentley, NJ
    Holtzman, DA
    Flaggs, G
    Keegan, KS
    DeMaggio, A
    Ford, JC
    Hoekstra, M
    Carr, AM
    [J]. EMBO JOURNAL, 1996, 15 (23) : 6641 - 6651
  • [3] THE CELLULAR-RESPONSES TO DNA-DAMAGE
    CARR, AM
    HOEKSTRA, MF
    [J]. TRENDS IN CELL BIOLOGY, 1995, 5 (01) : 32 - 40
  • [4] Control of cell cycle arrest by the Mec1(sc)/Rad3(sp) DNA structure checkpoint pathway
    Carr, AM
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 1997, 7 (01) : 93 - 98
  • [5] cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein
    Cimprich, KA
    Shin, TB
    Keith, CT
    Schreiber, SL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (07) : 2850 - 2855
  • [6] Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints
    Cliby, WA
    Roberts, CJ
    Cimprich, KA
    Stringer, CM
    Lamb, JR
    Schreiber, SL
    Friend, SH
    [J]. EMBO JOURNAL, 1998, 17 (01) : 159 - 169
  • [7] CROOK T, 1991, ONCOGENE, V6, P873
  • [8] ATAXIA-TELANGIECTASIA - AN INTERDISCIPLINARY APPROACH TO PATHOGENESIS
    GATTI, RA
    BODER, E
    VINTERS, HV
    SPARKES, RS
    NORMAN, A
    LANGE, K
    [J]. MEDICINE, 1991, 70 (02) : 99 - 117
  • [9] TEL1, A GENE INVOLVED IN CONTROLLING TELOMERE LENGTH IN SACCHAROMYCES-CEREVISIAE, IS HOMOLOGOUS TO THE HUMAN ATAXIA-TELANGIECTASIA GENE
    GREENWELL, PW
    KRONMAL, SL
    PORTER, SE
    GASSENHUBER, J
    OBERMAIER, B
    PETES, TD
    [J]. CELL, 1995, 82 (05) : 823 - 829
  • [10] CHECKPOINTS - CONTROLS THAT ENSURE THE ORDER OF CELL-CYCLE EVENTS
    HARTWELL, LH
    WEINERT, TA
    [J]. SCIENCE, 1989, 246 (4930) : 629 - 634