Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk

被引:107
作者
Bisquert, J [1 ]
机构
[1] Univ Jaume 1, Dept Ciencies Expt, Castellon de La Plana 12080, Spain
关键词
D O I
10.1103/PhysRevLett.91.010602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the macroscopic diffusion of carriers in the multiple-trapping (MT) regime, in relation with electron transport in nanoscaled heterogeneous systems, and we describe the differences, as well as the similarities, between MT and the continuous-time random walk (CTRW). Diffusion of free carriers in MT can be expressed as a generalized continuity equation based on fractional time derivatives, while the CTRW model for diffusive transport generalizes the constitutive equation for the carrier flux.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
Ambrozy A, 1982, ELECT NOISE
[2]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[3]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[4]   The generalized Cattaneo equation for the description of anomalous transport processes [J].
Compte, A ;
Metzler, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7277-7289
[5]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[6]   Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles [J].
de Jongh, PE ;
Vanmaekelbergh, D .
PHYSICAL REVIEW LETTERS, 1996, 77 (16) :3427-3430
[7]   Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells [J].
Franco, G ;
Gehring, J ;
Peter, LM ;
Ponomarev, EA ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04) :692-698
[8]   Fractional reaction-diffusion [J].
Henry, BI ;
Wearne, SL .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) :448-455
[9]   FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS [J].
HILFER, R ;
ANTON, L .
PHYSICAL REVIEW E, 1995, 51 (02) :R848-R851
[10]   Fractional diffusion based on Riemann-Liouville fractional derivatives [J].
Hilfer, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3914-3917