Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques

被引:48
作者
Arandiga, Francesc [2 ]
Cohen, Albert [1 ,3 ]
Donat, Rosa [2 ]
Dyn, Nira [4 ]
Matei, Basarab [5 ]
机构
[1] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] Univ Valencia, Dept Matemat Aplicada, Valencia, Spain
[3] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[4] Tel Aviv Univ, Sch Math Sci, IL-69987 Ramat Aviv, Israel
[5] Univ Paris 13, Inst Galilee, Lab Analyse Geometrie & Applicat, F-93430 Villetaneuse, France
关键词
D O I
10.1016/j.acha.2007.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces and analyzes new approximation procedures for bivariate functions. These procedures are based on an edge-adapted nonlinear reconstruction technique which is an intrinsically two-dimensional extension of the essentially non-oscillatory and subcell resolution techniques introduced in the one-dimensional setting by Harten and Osher. Edge-adapted reconstructions are tailored to piecewise smooth functions with geometrically smooth edge discontinuities, and are therefore attractive for applications such as image compression and shock computations. The local approximation order is investigated both in LP and in the Hausdorff distance between graphs. In particular, it is shown that for general classes of piecewise smooth functions, edge-adapted reconstructions yield multiscale representations which are optimally sparse and adaptive approximations with optimal rate of convergence, similar to curvelets decompositions for the L-2 error. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 30 条
[1]   Tensor product multiresolution analysis with error control for compact image representation [J].
Amat, S ;
Aràndiga, F ;
Cohen, A ;
Donat, R .
SIGNAL PROCESSING, 2002, 82 (04) :587-608
[2]   Data compression with ENO schemes:: A case study [J].
Amat, S ;
Aràndiga, F ;
Cohen, A ;
Donat, R ;
Garcia, G ;
von Oehsen, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 11 (02) :273-288
[3]  
ANANDIGA F, 2003, IEEE INT C IM PROC B, P701
[4]   Interpolation and approximation of piecewise smooth functions [J].
Arandiga, F ;
Cohen, A ;
Donat, R ;
Dyn, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :41-57
[5]   Nonlinear multiscale decompositions:: The approach of A.!Harten [J].
Aràndiga, F ;
Donat, R .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :175-216
[6]  
BARANIUK R, 1997, P 31 AS C
[7]  
BARANIUK R, 2006, IN PRESS IEEE T IMAG
[8]  
Candes E.J., 2002, Technical report
[9]   Curvelets and curvilinear integrals [J].
Candès, EJ ;
Donoho, DL .
JOURNAL OF APPROXIMATION THEORY, 2001, 113 (01) :59-90
[10]   ENO-wavelet transforms for piecewise smooth functions [J].
Chan, TF ;
Zhou, HM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1369-1404