Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene

被引:121
作者
Sire, Cedric [1 ]
Ardiaca, Florence [1 ]
Lepilliet, Sylvie [2 ]
Seo, Jung-Woo T. [3 ,4 ]
Hersam, Mark C. [3 ,4 ]
Darnbrine, Gilles [2 ]
Happy, Henri [2 ]
Derycke, Vincent [1 ]
机构
[1] CEA Saclay, IRAMIS, Serv Phys Etat Condense URA 2464, Lab Elect Mol, F-91191 Gif Sur Yvette, France
[2] Inst Elect Microelect & Nanotechnol, UMR CNRS 8520, F-59652 Villeneuve Dascq, France
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Graphene; single-layer; solution-based; transistor; high-frequency; flexible electronics; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; HIGH-FREQUENCY; PERFORMANCE; CIRCUITS; EXFOLIATION; ARRAYS;
D O I
10.1021/nl203316r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible electronics mostly relies on organic semiconductors but the limited carrier velocity in polymers and molecular films prevents their use at frequencies above a few megahertz. Conversely, the high potential of graphene for high-frequency electronics on rigid substrates was recently demonstrated. We conducted the first study of solution-based graphene transistors at gigahertz frequencies, and we show that solution-based single-layer graphene ideally combines the required properties to achieve high. speed flexible electronics on plastic substrates. Our graphene flexible transistors have current gain cutoff frequencies of 2.2 GHz and power gain cutoff frequencies of 550 MHz. Radio frequency measurements directly performed on bent samples show remarkable mechanical stability of these devices and demonstrate the advantages of solution-based graphene field-effect transistors over other types of flexible transistors based on organic materials.
引用
收藏
页码:1184 / 1188
页数:5
相关论文
共 47 条
[1]   High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Zhu, Zhengtao ;
Menard, Etienne ;
Nuzzo, Ralph G. ;
Rogers, John A. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (06) :460-462
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Pentacene-based radio-frequency identification circuitry [J].
Baude, PF ;
Ender, DA ;
Haase, MA ;
Kelley, TW ;
Muyres, DV ;
Theiss, SD .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3964-3966
[5]   An 8-GHz ft carbon nanotube field-effect transistor for gigahertz range applications [J].
Bethoux, J. -M. ;
Happy, H. ;
Dambrine, G. ;
Derycke, V. ;
Goffman, M. ;
Bourgoin, J. -P. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (08) :681-683
[6]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[7]   Flexible nanotube electronics [J].
Bradley, K ;
Gabriel, JCP ;
Grüner, G .
NANO LETTERS, 2003, 3 (10) :1353-1355
[8]   A 13.56-MHz RFID system based on organic transponders [J].
Cantatore, Eugenio ;
Geuns, Thomas C. T. ;
Gelinck, Gerwin H. ;
van Veenendaal, Erik ;
Gruijthuijsen, Arnold F. A. ;
Schrijnemakers, Laurens ;
Drews, Steffen ;
de Leeuw, Dago M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (01) :84-92
[9]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[10]   Gigahertz frequency flexible carbon nanotube transistors [J].
Chimot, N. ;
Derycke, V. ;
Goffman, M. F. ;
Bourgoin, J. P. ;
Happy, H. ;
Dambrine, G. .
APPLIED PHYSICS LETTERS, 2007, 91 (15)