Improving Renewable Energy Forecasting With a Grid of Numerical Weather Predictions

被引:185
作者
Andrade, Jose R. [1 ]
Bessa, Ricardo J. [1 ]
机构
[1] INESC Technol & Sci INESC TEC, Campus FEUP, P-4200465 Oporto, Portugal
关键词
Feature engineering; forecasting; probabilistic; solar energy; spatial; temporal; wind energy; weather predictions; ANALOG ENSEMBLE; POWER;
D O I
10.1109/TSTE.2017.2694340
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the last two decades, renewable energy forecasting progressed toward the development of advanced physical and statistical algorithms aiming at improving point and probabilistic forecast skill. This paper describes a forecasting framework to explore information from a grid of numerical weather predictions (NWP) applied to both wind and solar energy. The methodology combines the gradient boosting trees algorithm with feature engineering techniques that extract the maximum information from the NWP grid. Compared to a model that only considers one NWP point for a specific location, the results show an average point forecast improvement (in terms of mean absolute error) of 16.09% and 12.85% for solar and wind power, respectively. The probabilistic forecast improvement, in terms of continuous ranked probabilistic score, was 13.11% and 12.06%, respectively.
引用
收藏
页码:1571 / 1580
页数:10
相关论文
共 32 条
[1]   An analog ensemble for short-term probabilistic solar power forecast [J].
Alessandrini, S. ;
Delle Monache, L. ;
Sperati, S. ;
Cervone, G. .
APPLIED ENERGY, 2015, 157 :95-110
[2]   A novel application of an analog ensemble for short-term wind power forecasting [J].
Alessandrini, S. ;
Delle Monache, L. ;
Sperati, S. ;
Nissen, J. N. .
RENEWABLE ENERGY, 2015, 76 :768-781
[3]   PV power forecast using a nonparametric PV model [J].
Almeida, Marcelo Pinho ;
Perpinan, Oscar ;
Narvarte, Luis .
SOLAR ENERGY, 2015, 115 :354-368
[4]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[5]   Online short-term solar power forecasting [J].
Bacher, Peder ;
Madsen, Henrik ;
Nielsen, Henrik Aalborg .
SOLAR ENERGY, 2009, 83 (10) :1772-1783
[6]   Probabilistic solar power forecasting in smart grids using distributed information [J].
Bessa, R. J. ;
Trindade, A. ;
Silva, Catia S. P. ;
Miranda, V. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 72 :16-23
[7]   Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting [J].
Bessa, Ricardo J. ;
Miranda, Vladimiro ;
Botterud, Audun ;
Wang, Jianhui ;
Constantinescu, Emil M. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (04) :660-669
[8]   Probabilistic wind power forecasts using local quantile regression [J].
Bremnes, JB .
WIND ENERGY, 2004, 7 (01) :47-54
[9]   LASSO vector autoregression structures for very short-term wind power forecasting [J].
Cavalcante, Laura ;
Bessa, Ricardo J. ;
Reis, Marisa ;
Browell, Jethro .
WIND ENERGY, 2017, 20 (04) :657-675
[10]   Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting [J].
Davo, Federica ;
Alessandrini, Stefano ;
Sperati, Simone ;
Delle Monache, Luca ;
Airoldi, Davide ;
Vespucci, Maria T. .
SOLAR ENERGY, 2016, 134 :327-338