New applications of fractional variational principles

被引:55
作者
Baleanu, Dumitru [1 ,2 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
关键词
fractional Lagrangian and Hamiltonian; Riesz derivatives; dissipative systems;
D O I
10.1016/S0034-4877(08)80007-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper the fractional variational principles of constrained systems involving Riesz derivatives are discussed and one example is analyzed in detail. The fractional Euler-Lagrange equations of two fractional Lagrangians which differ by a fractional Riesz derivative are investigated.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 32 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[3]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[4]   Generalized Euler-Lagrange equations and mransversality conditions for FVPs in terms of the caputo derivative [J].
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1217-1237
[5]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[6]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[7]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[8]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[9]   Fractional Hamiltonian analysis of irregular systems [J].
Baleanu, Dumitru .
SIGNAL PROCESSING, 2006, 86 (10) :2632-2636
[10]  
CARATHEODORY C, 1983, PHYS REP, V101, P3