Strong ellipticity and spectral properties of chiral bag boundary conditions

被引:14
作者
Beneventano, CG
Gilkey, PB
Kirsten, K
Santangelo, EM
机构
[1] Natl Univ La Plata, Dept Fis, RA-1900 La Plata, Argentina
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 45期
关键词
D O I
10.1088/0305-4470/36/45/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove strong ellipticity of chiral bag boundary conditions on even dimensional manifolds. From a knowledge of the heat kernel in an infinite cylinder, some basic properties of the zeta function are analysed on cylindrical product manifolds of arbitrary even dimension.
引用
收藏
页码:11533 / 11543
页数:11
相关论文
共 25 条
[1]  
[Anonymous], Z ANAL IHRE ANWENDUN
[2]   Chern-Simons hadronic bag from quenched large-N QCD [J].
Ansoldi, S ;
Castro, C ;
Spallucci, E .
PHYSICS LETTERS B, 2001, 504 (1-2) :174-180
[3]   Gauge theories on manifolds with boundary [J].
Avramidi, IG ;
Esposito, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) :495-543
[4]   Spectral asymmetry for bag boundary conditions [J].
Beneventano, CG ;
Santangelo, EM ;
Wipf, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44) :9343-9354
[5]   Analytical solution of the dynamical spherical MIT bag [J].
Colanero, K ;
Chu, MC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (04) :993-999
[6]   The α3/2 heat kernel coefficient for oblique boundary conditions [J].
Dowker, JS ;
Kirsten, K .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (06) :1917-1936
[7]   Finite temperature schwinger model with chirality breaking boundary conditions [J].
Durr, S ;
Wipf, A .
ANNALS OF PHYSICS, 1997, 255 (02) :333-361
[8]   Aspects of quasi-phase-structure of the Schwinger model on a cylinder with broken chiral symmetry [J].
Dürr, S .
ANNALS OF PHYSICS, 1999, 273 (01) :1-36
[9]   Heat kernel coefficients for Chern-Simons boundary conditions in QED [J].
Elizalde, E ;
Vassilevich, DV .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) :813-822
[10]   Zeta function for the Laplace operator acting on forms in a ball with gauge boundary conditions [J].
Elizalde, E ;
Lygren, M ;
Vassilevich, DV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) :645-660