Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors

被引:94
作者
Eden, JG [1 ]
Park, SJ
Ostrom, NP
McCain, ST
Wagner, CJ
Vojak, BA
Chen, J
Liu, C
von Allmen, P
Zenhausern, F
Sadler, DJ
Jensen, C
Wilcox, DL
Ewing, JJ
机构
[1] Univ Illinois, Lab Opt Phys & Engn, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Microelect Lab, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Motorola Labs, Solid State Res Ctr, Tempe, AZ 85284 USA
[4] Ewing Technol Associates, Bellevue, WA 98006 USA
关键词
D O I
10.1088/0022-3727/36/23/001
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent advances in the development of microplasma devices fabricated in a variety of materials systems (Si, ceramic multilayers, and metal/polymer structures) and configurations are reviewed. Arrays of microplasma emitters, having inverted pyramidal Si electrodes or produced in ceramic multilayer sandwiches with integrated ballasting for each pixel, have been demonstrated and arrays as large as 30 x 30 pixels are described. A new class of photodetectors, hybrid semiconductor/microplasma devices, is shown to exhibit photoresponsivities in the visible and near-infrared that are more than an order of magnitude larger than those typical of semiconductor avalanche photodiodes. Microdischarge devices having refractory or piezoelectric dielectric films such as Al2O3 or BN have extended lifetimes (similar to86% of initial radiant output after 100 h with an Al2O3 dielectric) and controllable electrical characteristics. A segmented, linear array of microdischarges, fabricated in a ceramic multilayer structure and having an active length of similar to1 cm and a clear aperture of 80 x 360 mum(2), exhibits evidence of gain on the 460.3 nm transition of Xe+, making it the first example of a microdischarge-driven optical amplifier.
引用
收藏
页码:2869 / 2877
页数:9
相关论文
共 19 条
[1]   Microdischarge array-assisted ignition of a high-pressure discharge: Application to arc lamps [J].
Eden, JG ;
Wagner, CJ ;
Gao, J ;
Ostrom, NP ;
Park, SJ .
APPLIED PHYSICS LETTERS, 2001, 79 (26) :4304-4306
[2]   Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge [J].
Frame, JW ;
John, PC ;
De Temple, TA ;
Eden, JG .
APPLIED PHYSICS LETTERS, 1998, 72 (21) :2634-2636
[3]   Planar microdischarge arrays [J].
Frame, JW ;
Eden, JG .
ELECTRONICS LETTERS, 1998, 34 (15) :1529-1531
[4]   Microdischarge devices fabricated in silicon [J].
Frame, JW ;
Wheeler, DJ ;
DeTemple, TA ;
Eden, JG .
APPLIED PHYSICS LETTERS, 1997, 71 (09) :1165-1167
[5]   Radio-frequency microdischarge arrays for large-area cold atmospheric plasma generation [J].
Guo, YB ;
Hong, FCN .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :337-339
[6]  
KUSHNER MJ, COMMUNICATION
[7]   Flexible microdischarge arrays: Metal/polymer devices [J].
Park, SJ ;
Wagner, CJ ;
Herring, CM ;
Eden, JG .
APPLIED PHYSICS LETTERS, 2000, 77 (02) :199-201
[8]   Photodetection in the visible, ultraviolet, and near-infrared with silicon microdischarge devices [J].
Park, SJ ;
Eden, JG ;
Ewing, JJ .
APPLIED PHYSICS LETTERS, 2002, 81 (24) :4529-4531
[9]  
Park SJ, 2002, IEEE J SEL TOP QUANT, V8, P387
[10]   13-30 micron diameter microdischarge devices: Atomic ion and molecular emission at above atmospheric pressures [J].
Park, SJ ;
Eden, JG .
APPLIED PHYSICS LETTERS, 2002, 81 (22) :4127-4129