Superconductor-insulator transition on annealed complex networks

被引:64
作者
Bianconi, Ginestra [1 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
关键词
TEMPERATURE;
D O I
10.1103/PhysRevE.85.061113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cuprates show multiphase and multiscale complexity that has hindered physicists search for the mechanism of high T-c for many years. Recently the interest has been addressed to a possible optimum inhomogeneity of dopants, defects, and interstitials, and the structural scale invariance of dopants detected by scanning micro-x-ray diffraction has been reported to promote the critical temperature. In order to shed light on critical phenomena on granular materials, here we propose a stylized model capturing the essential characteristics of the superconducting-insulator transition of a highly dynamical, heterogeneous granular material: the random transverse Ising model (RTIM) on annealed complex network. We show that when the networks encode for high heterogeneity of the expected degrees described by a power-law distribution, the critical temperature for the onset of the superconducting phase diverges to infinity as the power-law exponent gamma of the expected degree distribution is less than 3, i.e., gamma < 3. Moreover we investigate the case in which the critical state of the electronic background is triggered by an external parameter g that determines an exponential cutoff in the power-law expected degree distribution characterized by an exponent gamma. We find that for g = g(c) the critical temperature for the superconducting-insulator transition has a maximum if gamma > 3 and diverges if gamma < 3.
引用
收藏
页数:5
相关论文
共 44 条
[1]  
[Anonymous], 2000, QUANTUM PHASE TRANSI
[2]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[3]  
Barrat A., 2008, Dynamical Processes on Complex Networks
[4]   The stripe critical point for cuprates [J].
Bianconi, A ;
Bianconi, G ;
Caprara, S ;
Di Castro, D ;
Oyanagi, H ;
Saini, NL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (50) :10655-10666
[5]   Mean field solution of the Ising model on a Barabasi-Albert network [J].
Bianconi, G .
PHYSICS LETTERS A, 2002, 303 (2-3) :166-168
[6]   Superconductor-insulator transition in La2-xSrxCuO4 at the pair quantum resistance [J].
Bollinger, A. T. ;
Dubuis, G. ;
Yoon, J. ;
Pavuna, D. ;
Misewich, J. ;
Bozovic, I. .
NATURE, 2011, 472 (7344) :458-460
[7]   Magnetic effects at the interface between non-magnetic oxides [J].
Brinkman, A. ;
Huijben, M. ;
Van Zalk, M. ;
Huijben, J. ;
Zeitler, U. ;
Maan, J. C. ;
Van der Wiel, W. G. ;
Rijnders, G. ;
Blank, D. H. A. ;
Hilgenkamp, H. .
NATURE MATERIALS, 2007, 6 (07) :493-496
[8]   Vibrational thermodynamic instability of recursive networks [J].
Burioni, R ;
Cassi, D ;
Fontana, MP ;
Vulpiani, A .
EUROPHYSICS LETTERS, 2002, 58 (06) :806-810
[9]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[10]   Complexity in strongly correlated electronic systems [J].
Dagotto, E .
SCIENCE, 2005, 309 (5732) :257-262