Short peptide based hydrogels: incorporation of graphene into the hydrogel

被引:151
作者
Adhikari, Bimalendu [1 ]
Banerjee, Arindam [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Biol Chem, Kolkata 700032, India
关键词
IN-SITU REDUCTION; SUPRAMOLECULAR HYDROGELS; CARBON NANOTUBES; ELECTRICAL-CONDUCTIVITY; SMALL MOLECULES; AMINO-ACID; OXIDE; HYBRID; ORGANOGELS; GELS;
D O I
10.1039/c1sm06330h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stable supramolecular hydrogels were obtained from Fmoc (N-fluorenyl-9-methoxycarbonyl) protected synthetic dipeptides, Fmoc-Xaa-Asp-OH (Xaa = Tyr, Phe). These hydrogels were characterized by various methods including transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), fluorescence spectroscopy and rheology. Different microscopic studies showed the presence of an entangled uniform nanofibrillar network structure in the gel state. These gelator molecules containing aromatic moieties in the side chain (Tyr/Phe) and in the N-terminus (fluorenyl group) can be useful in interacting with graphene sheets using p-p stacking interactions. One of these peptide based hydrogels (Fmoc-Tyr-Asp-OH) was utilized for the successful incorporation of reduced graphene oxide (RGO) into the hydrogel to make a well-dispersed RGO containing stable hybrid hydrogel. This study demonstrates that RGO is stabilized within the peptide based hydrogel system without the help of any external stabilizing agent. The RGO containing hybrid hydrogel was characterized using transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman spectroscopy, and rheology. Morphological studies reveal the presence of a nano-hybrid system containing graphene (RGO) sheets and gel nanofibrils. The morphology of the peptide hydrogel does not change significantly even after the incorporation of RGO as it is evident from TEM and AFM studies. Rheological studies suggest the formation of a more rigid and 'solid-like' hybrid hydrogel after the incorporation of RGO into the native hydrogel.
引用
收藏
页码:9259 / 9266
页数:8
相关论文
共 104 条
[1]   Dipeptide and Tripeptide Conjugates as Low-Molecular-Weight Hydrogelators [J].
Adams, Dave J. .
MACROMOLECULAR BIOSCIENCE, 2011, 11 (02) :160-173
[2]   Peptide conjugate hydrogelators [J].
Adams, Dave J. ;
Topham, Paul D. .
SOFT MATTER, 2010, 6 (16) :3707-3721
[3]   Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides [J].
Adams, Dave J. ;
Mullen, Leanne M. ;
Berta, Marco ;
Chen, Lin ;
Frith, William J. .
SOFT MATTER, 2010, 6 (09) :1971-1980
[4]   Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water [J].
Adhikari, Bimalendu ;
Palui, Goutam ;
Banerjee, Arindam .
SOFT MATTER, 2009, 5 (18) :3452-3460
[5]   Self-assembling peptide polyelectrolyte β-sheet complexes form nematic hydrogels [J].
Aggeli, A ;
Bell, M ;
Boden, N ;
Carrick, LM ;
Strong, AE .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (45) :5603-5606
[6]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[7]   Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization [J].
Alzari, Valeria ;
Nuvoli, Daniele ;
Scognamillo, Sergio ;
Piccinini, Massimo ;
Gioffredi, Emilia ;
Malucelli, Giulio ;
Marceddu, Salvatore ;
Sechi, Mario ;
Sanna, Vanna ;
Mariani, Alberto .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (24) :8727-8733
[8]   High-Throughput Synthesis of Graphene by Intercalation - Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor [J].
Ang, Priscilla Kailian ;
Wang, Shuai ;
Bao, Qiaoliang ;
Thong, John T. L. ;
Loh, Kian Ping .
ACS NANO, 2009, 3 (11) :3587-3594
[9]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[10]   A pH-sensitive graphene oxide composite hydrogel [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2010, 46 (14) :2376-2378