Realistic finite element-based stent design: The impact of balloon folding

被引:141
作者
De Beule, Matthieu [1 ]
Mortier, Peter [2 ]
Carlier, Stphane G. [3 ]
Verhegghe, Benedict [4 ]
Van Impe, Rudy [1 ]
Verdonck, Pascal [2 ]
机构
[1] Univ Ghent VIB, Lab Res Struct Models, B-9052 Ghent, Belgium
[2] Univ Ghent, Inst Biomed Technol, Ghent, Belgium
[3] Univ Nacl Colombia, Med Ctr, Cardiovasc Res Fdn, New York, NY USA
[4] Univ Ghent, Lab Mech Construct & Prod, Ghent, Belgium
关键词
stent; finite element method; design; (folded) balloon;
D O I
10.1016/j.jbiomech.2007.08.014
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
At present, the deployment of an intravascular stent has become a common and widely used minimally invasive treatment for coronary heart disease. To improve these coronary revascularization procedures (e.g. reduce in-stent restenosis rates) the optimal strategy ties in the further development of stent design, material and coatings. In the context of optimizing the stent design, computational models can provide an excellent research tool. In this study, the hypothesis that the free expansion of a stent is determined by the unfolding and expansion of the balloon is examined. Different expansion modeling strategies are studied and compared for a new generation balloon-expandable coronary stent. The trifolded balloon methodology presented in this paper shows very good qualitative and quantitative agreement with both manufacturer's data and experiments. Therefore, the proposed numerical expansion strategy appears to be a very promising optimization methodology in stent design. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:383 / 389
页数:7
相关论文
共 21 条
[1]  
*AM HEART ASS, 2006, HEART DIS STROK STAT
[2]  
Auricchio F., 2001, COMPUT METHOD BIOMEC, V4, P249, DOI DOI 10.1080/10255840108908007
[3]  
BEDOYA J, 2006, J BIOMECHANICAL ENG, V5, P757
[4]   Intravascular ultrasonic assessment of Stent diameters derived from manufacturer's compliance charts [J].
Costa, JD ;
Mintz, GS ;
Carlier, SG ;
Costa, RA ;
Fujii, K ;
Sano, K ;
Kimura, M ;
Lui, J ;
Weisz, G ;
Moussa, I ;
Dangas, G ;
Mehran, R ;
Lansky, AJ ;
Kreps, EM ;
Collins, M ;
Stone, GW ;
Moses, JW ;
Leon, MB .
AMERICAN JOURNAL OF CARDIOLOGY, 2005, 96 (01) :74-78
[5]   Finite element analysis of covered microstents [J].
Gu, LX ;
Santra, S ;
Mericle, RA ;
Kumar, AV .
JOURNAL OF BIOMECHANICS, 2005, 38 (06) :1221-1227
[6]  
HOLZAPFEL GA, 2005, MECH BIOL TISSUE, P207
[7]   Incremental cost-effectiveness of drug-eluting stents compared with a third-generation bare-metal stent in a real-world setting: randomised Basel Stent Kosten Effektivitats Trial (BASKET) [J].
Kaiser, C ;
Brunner-LaRocca, HP ;
Buser, PT ;
Bonetti, PO ;
Osswald, S ;
Linka, A ;
Bernheim, A ;
Zutter, A ;
Zellweger, M ;
Grize, L ;
Pfisterer, ME .
LANCET, 2005, 366 (9489) :921-929
[8]   Coronary artery stents: Evaluating new designs for contemporary percutaneous intervention [J].
Kandzari, DE ;
Tcheng, JE ;
Zidar, JP .
CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2002, 56 (04) :562-576
[9]   Restenosis after coronary placement of various stent types [J].
Kastrati, A ;
Mehilli, J ;
Dirschinger, J ;
Pache, J ;
Ulm, K ;
Schühlen, H ;
Seyfarth, M ;
Schmitt, C ;
Blasini, R ;
Neumann, FJ ;
Schömig, A .
AMERICAN JOURNAL OF CARDIOLOGY, 2001, 87 (01) :34-39
[10]   Cardiovascular stent design and vessel stresses: a finite element analysis [J].
Lally, C ;
Dolan, F ;
Prendergast, PJ .
JOURNAL OF BIOMECHANICS, 2005, 38 (08) :1574-1581