Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

被引:107
作者
van Manen, Henk-Jan [1 ,2 ]
Verkuijlen, Paul [3 ,4 ]
Wittendorp, Paul [1 ,2 ]
Subramaniam, Vinod [1 ,2 ]
van den Berg, Timo K. [3 ,4 ]
Roos, Dirk [3 ,4 ]
Otto, Cees [1 ,2 ]
机构
[1] Univ Twente, Inst Biomed Technol, Biophys Engn Grp, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA, NL-7500 AE Enschede, Netherlands
[3] Univ Amsterdam, Acad Med Ctr, Landsteiner Lab, NL-1105 AZ Amsterdam, Netherlands
[4] Univ Amsterdam, Sanquin Res, Dept Blood Cell Res, NL-1105 AZ Amsterdam, Netherlands
关键词
D O I
10.1529/biophysj.107.127837
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91(phox) are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91(phox). By comparing these lifetimes with a calibration curve obtained by measuring GFIP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91(Phox) are similar to 1.38 and similar to 1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.
引用
收藏
页码:L67 / L69
页数:3
相关论文
共 20 条
[1]   The spatial variation of the refractive index in biological cells [J].
Beuthan, J ;
Minet, O ;
Helfmann, J ;
Herrig, M ;
Muller, G .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (03) :369-382
[2]   Regulation of the phagocyte NADPH oxidase by Rac GTPase [J].
Bokoch, Gary M. ;
Zhao, Tieming .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (9-10) :1533-1548
[3]   Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins [J].
Borst, JW ;
Hink, MA ;
van Hoek, A ;
Visser, AJWG .
JOURNAL OF FLUORESCENCE, 2005, 15 (02) :153-160
[4]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[5]   Tomographic phase microscopy [J].
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Oh, Seungeun ;
Lue, Niyom ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
NATURE METHODS, 2007, 4 (09) :717-719
[6]   The NADPH oxidase of professional phagocytes - prototype of the NOX electron transport chain systems [J].
Cross, AR ;
Segal, AW .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1657 (01) :1-22
[7]   Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy [J].
Curl, CL ;
Bellair, CJ ;
Harris, T ;
Allman, BE ;
Harris, PJ ;
Stewart, AG ;
Roberts, A ;
Nugent, KA ;
Delbridge, LMD .
CYTOMETRY PART A, 2005, 65A (01) :88-92
[8]   Imaging proteins in vivo using fluorescence lifetime microscopy [J].
Festy, Frederic ;
Ameer-Beg, Simon M. ;
Ng, Tony ;
Suhling, Klaus .
MOLECULAR BIOSYSTEMS, 2007, 3 (06) :381-391
[9]  
Hanley QS, 2001, CYTOMETRY, V43, P248, DOI 10.1002/1097-0320(20010401)43:4<248::AID-CYTO1057>3.0.CO
[10]  
2-Y