MicroRNA regulation of human protein-protein interaction network

被引:128
作者
Liang, Han [1 ]
Li, Wen-Hsiung [1 ]
机构
[1] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
关键词
GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; ANIMAL MICRORNAS; TARGETS; MAP; MOUSE; TRANSCRIPTOMES; PREDICTION; EVOLUTION; ELEGANS;
D O I
10.1261/rna.634607
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since the functional state of a protein-protein interaction network depends on gene expression, a fundamental question is what relationships exist between protein interaction network and gene regulation. In particular, microRNAs have recently emerged as a major class of post-transcriptional regulators that influences a large proportion of genes in higher eukaryotes. Here we show that protein connectivity in the human protein-protein interaction network is positively correlated with the number of microRNA target-site types in the 3' untranslated regions of the gene encoding the protein and that interacting proteins tend to share more microRNA target-site types than random pairs. Moreover, our results demonstrate that microRNA targeting propensity for genes in different biological processes can be largely explained by their protein connectivity. Finally, we show that for hub proteins, microRNA regulation complexity is negatively correlated with clustering coefficient, suggesting that microRNA regulation is more important to inter-modular hubs than to intramodular ones. Taken together, our study provides the first evidence for global correlation between microRNA repression and protein-protein interactions.
引用
收藏
页码:1402 / 1408
页数:7
相关论文
共 39 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[3]   Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs [J].
Bartel, DP ;
Chen, CZ .
NATURE REVIEWS GENETICS, 2004, 5 (05) :396-400
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[6]   Revealing posttranscriptional regulatory elements through network-level conservation [J].
Chan, g S. Chan ;
Elemento, Olivier ;
Tavazoie, Saeed .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (07) :564-578
[7]   MicroRNAs preferentially target the genes with high transcriptional regulation complexity [J].
Cui, Qinghua ;
Yu, Zhenbao ;
Pan, Youlian ;
Purisima, Enrico O. ;
Wang, Edwin .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 352 (03) :733-738
[8]   Principles of microRNA regulation of a human cellular signaling network [J].
Cui, Qinghua ;
Yu, Zhenbao ;
Purisima, Enrico O. ;
Wang, Edwin .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
[9]   The widespread impact of mammalian microRNAs on mRNA repression and evolution [J].
Farh, KKH ;
Grimson, A ;
Jan, C ;
Lewis, BP ;
Johnston, WK ;
Lim, LP ;
Burge, CB ;
Bartel, DP .
SCIENCE, 2005, 310 (5755) :1817-1821
[10]   Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae [J].
Ge, H ;
Liu, ZH ;
Church, GM ;
Vidal, M .
NATURE GENETICS, 2001, 29 (04) :482-486