MicroRNAs preferentially target the genes with high transcriptional regulation complexity

被引:99
作者
Cui, Qinghua
Yu, Zhenbao
Pan, Youlian
Purisima, Enrico O.
Wang, Edwin
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
[2] Natl Res Council Canada, Inst Informat Technol, Ottawa, ON K1A 0R6, Canada
关键词
microRNA; transcription factor; gene expression regulation; microRNA target; transcription factor-binding site;
D O I
10.1016/j.bbrc.2006.11.080
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Over the past few years, microRNAs (miRNAs) have emerged as a new prominent class of gene regulatory factors that negatively regulate expression of approximately one-third of the genes in animal genomes at post-transcriptional level. However, it is still unclear why some genes are regulated by miRNAs but others are not, i.e. what principles govern miRNA regulation in animal genomes. In this study, we systematically analyzed the relationship between transcription factors (TFs) and miRNAs in gene regulation. We found that the genes with more TF-binding sites have a higher probability of being targeted by miRNAs and have more miRNA-binding sites on average. This observation reveals that the genes with higher cis-regulation complexity are more coordinately regulated by TFs at the transcriptional level and by miRNAs at the post-transcriptional level. This is a potentially novel discovery of mechanism for coordinated regulation of gene expression. Gene ontology analysis further demonstrated that such coordinated regulation is more popular in the developmental genes. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:733 / 738
页数:6
相关论文
共 39 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   GOstat: find statistically overrepresented Gene Ontologies within a group of genes [J].
Beissbarth, T ;
Speed, TP .
BIOINFORMATICS, 2004, 20 (09) :1464-1465
[4]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[5]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[6]   RNase III enzymes and the initiation of gene silencing [J].
Carmell, MA ;
Hannon, GJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (03) :214-218
[7]   cis-Regulatory and protein evolution in orthologous and duplicate genes [J].
Castillo-Davis, CI ;
Hartl, DL ;
Achaz, G .
GENOME RESEARCH, 2004, 14 (08) :1530-1536
[8]   Ab initio identification of putative human transcription factor binding sites by comparative genomics - art. no. 110 [J].
Corà, D ;
Herrmann, C ;
Dieterich, C ;
Di Cunto, F ;
Provero, P ;
Caselle, M .
BMC BIOINFORMATICS, 2005, 6 (1)
[9]   Principles of microRNA regulation of a human cellular signaling network [J].
Cui, Qinghua ;
Yu, Zhenbao ;
Purisima, Enrico O. ;
Wang, Edwin .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
[10]   Transcription and processing of human microRNA precursors [J].
Cullen, BR .
MOLECULAR CELL, 2004, 16 (06) :861-865