Comparison between sheep and human cervical spines -: An anatomic, radiographic, bone mineral density, and biomechanical study

被引:134
作者
Kandziora, F [1 ]
Pflugmacher, R [1 ]
Scholz, M [1 ]
Schnake, K [1 ]
Lucke, M [1 ]
Schröder, R [1 ]
Mittlmeier, T [1 ]
机构
[1] Humboldt Univ, Klinikum Charite, Strahlenklin & Poliklin, D-13353 Berlin, Germany
关键词
anatomy; animal model; biomechanics; bone mineral density; cervical spine; human; radiology; sheep;
D O I
10.1097/00007632-200105010-00008
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Design. The quantitative anatomic, radiographic, computerized tomographic, and biomechanical data of sheep and human cervical spines were evaluated. Objectives. To compare the anatomic, radiographic, computerized tomographic, and biomechanical data of human and sheep cervical spines to determine whether the sheep spine is a suitable model for human spine research. Summary of Background Data. Sheep spines have been used in several in vivo and in vitro experiments. Quantitative data of the normal sheep cervical spine are racking, yet these data are crucial to discussion a bout the results of such animal studies. Methods. In this study, 20 fresh adult female Merino sheep cervical spines and 20 fresh human cadaver cervical spines were evaluated anatomically, radiographically, computerized tomographically, and biomechanically. Three linear and two angular parameters were evaluated on four digital radiographic views: anteroposterior, right lateral in neutral position, flexion, and extension. Quantitative computed tomography scans at the center of each vertebral body and 3 mm below both endplates were analyzed for bone mineral density measurements. Biomechanical testing was performed in flexion, extension, axial rotation, and lateral bending by a nondestructive stiffness method using a nonconstrained testing apparatus. Range of motion and stiffness of each motion segment were calculated. Additionally, 10 linear anatomic parameters of each vertebra were measured using a digital ruler. Results. Anterior and mean disc space height in the sheep cervical spine increased constantly from C2-C3 to C6-C7, whereas middle disc space height decreased and posterior disc space height remained unchanged. Anterior and mean disc space height were significantly higher in sheep. In both sheep and human cervical spines, intervertebral angles were not significantly different. Standard deviations of bone mineral density in the human cervical spine were fourfold higher than in the sheep cervical spine, yet no significant differences were found in bone mineral density values between the two species. Range of motion differed significantly between the two species except in flexion-extension of C3-C4, C5-C6, axial rotation of C2-C3, and lateral bending of C2-C3, C3-C4, and C4-C5. Stiffness also was significantly different except in flexion-extension of C2-C3, C4-C5, C5-C6, and lateral bending of C2-C3, C3-C4, and C4-C5. Anatomic evaluation showed no difference in upper endplate parameters for C4 and C5. Conclusions. Although several differences were found between human and sheep cervical spines; the small intergroup standard deviations and the good comparability: with the human spine encourage the use of the sheep cervical spine as a model for cervical spine research. On the basis of the quantitative data obtained in this study, the sheep motion segment C3-C4 seemed to be the most reliable model for the corresponding human motion segment.
引用
收藏
页码:1028 / 1037
页数:10
相关论文
共 37 条
[1]   ANULAR INCISION TECHNIQUE ON THE STRENGTH AND MULTIDIRECTIONAL FLEXIBILITY OF THE HEALING INTERVERTEBRAL DISC [J].
AHLGREN, BD ;
VASAVADA, A ;
BROWER, RS ;
LYDON, C ;
HERKOWITZ, HN ;
PANJABI, MM .
SPINE, 1994, 19 (08) :948-954
[2]   PSEUDOARTHROSIS RATE AFTER ALLOGRAFT POSTERIOR LUMBAR INTERBODY FUSION WITH PEDICLE SCREW AND PLATE FIXATION [J].
BRANTIGAN, JW .
SPINE, 1994, 19 (11) :1271-1279
[3]   BONY AND VASCULAR ANATOMY OF THE NORMAL CERVICAL-SPINE IN THE SHEEP [J].
CAIN, CCMJ ;
FRASER, RD .
SPINE, 1995, 20 (07) :759-765
[4]   AN APPARATUS FOR APPLYING PURE NONCONSTRAINING MOMENTS TO SPINE SEGMENTS IN-VITRO [J].
CRAWFORD, NR ;
BRANTLEY, AGU ;
DICKMAN, CA ;
KOENEMAN, EJ .
SPINE, 1995, 20 (19) :2097-2100
[5]   Segmental variations of bone mineral density in the cervical spine [J].
Curylo, LJ ;
Lindsey, RW ;
Doherty, BJ ;
LeBlanc, A .
SPINE, 1996, 21 (03) :319-322
[6]   Morphometric evaluation of lower cervical pedicle and its projection [J].
Ebraheim, NA ;
Xu, RM ;
Knight, T ;
Yeasting, RA .
SPINE, 1997, 22 (01) :1-5
[7]   FORMALIN FIXATION EFFECTS ON VERTEBRAL BONE-DENSITY AND FAILURE MECHANICS - AN IN-VITRO STUDY OF HUMAN AND SHEEP VERTEBRAE [J].
EDMONDSTON, SJ ;
SINGER, KP ;
DAY, RE ;
BREIDAHL, PD ;
PRICE, RI .
CLINICAL BIOMECHANICS, 1994, 9 (03) :175-179
[8]  
Eggli S, 1992, Eur Spine J, V1, P109, DOI 10.1007/BF00300937
[9]   DIMENSIONS OF THE CERVICAL VERTEBRAE [J].
FRANCIS, CC .
ANATOMICAL RECORD, 1955, 122 (04) :603-609
[10]  
Green T P, 1993, Eur Spine J, V2, P209, DOI 10.1007/BF00299448