Application of the finite-size Lyapunov exponent to particle tracking velocimetry in fluid mechanics experiments

被引:24
作者
Kleinfelter, N
Moroni, M
Cushman, JH [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Roma La Sapienza, Dept Hydraul Transportat & Rd, Rome, Italy
[3] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevE.72.056306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A finite-size (or scale) Lyapunov exponent (FSLE), lambda(a)(x), is presented in a statistical mechanical framework and employed to characterize mixing in a variety of laboratory and computational fluid mechanics experiments. The FSLE is the exponential rate at which two particles separate from a distance x to ax. Laboratory particle tracking experiments are used to study penetrative convection and flow in porous media while computational experiments are used to study Levy processes and deterministic diffusion. The apparent scaling relation lambda(a)(x)similar to C(a)x(-beta(a)) of the FSLE holds over intermediate initial separations where the laboratory experiment data is most accurate and asymptotically for the computational experiments. The dependence of the exponent beta on a decreases with increasing a. In the matched index porous system, C-a is also a function of mean fluid velocity. The exponent beta is alpha when the Levy process is alpha-stable and in this case beta is independent of a.
引用
收藏
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 2003, FRACTAL GEOMETRY, DOI DOI 10.1002/0470013850
[2]   Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient [J].
Artale, V ;
Boffetta, G ;
Celani, A ;
Cencini, M ;
Vulpiani, A .
PHYSICS OF FLUIDS, 1997, 9 (11) :3162-3171
[3]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[4]   Growth of noninfinitesimal perturbations in turbulence [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1262-1265
[5]   Motile behavior of bacteria [J].
Berg, HC .
PHYSICS TODAY, 2000, 53 (01) :24-29
[6]   Experimental evidence of chaotic advection in a convective flow [J].
Boffetta, G ;
Cencini, M ;
Espa, S ;
Querzoli, G .
EUROPHYSICS LETTERS, 1999, 48 (06) :629-633
[7]   Chaotic advection and relative dispersion in an experimental convective flow [J].
Boffetta, G ;
Cencini, M ;
Espa, S ;
Querzoli, G .
PHYSICS OF FLUIDS, 2000, 12 (12) :3160-3167
[8]   Slow and fast dynamics in coupled systems: A time series analysis view [J].
Boffetta, G ;
Crisanti, A ;
Paparella, F ;
Provenzale, A ;
Vulpiani, A .
PHYSICA D, 1998, 116 (3-4) :301-312
[9]  
Boffetta G, 1998, J ATMOS SCI, V55, P3409, DOI 10.1175/1520-0469(1998)055<3409:AEOTLA>2.0.CO
[10]  
2