Instantons and chiral anomaly in fuzzy physics

被引:74
作者
Balachandran, AP [1 ]
Vaidya, S
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
[3] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2001年 / 16卷 / 01期
关键词
D O I
10.1142/S0217751X01003214
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In continuum physics, there are important topological aspects like instantons, theta -terms and the axial anomaly. Conventional lattice discretizations often have difficulties in treating one or the other of these aspects. In this paper, we develop discrete quantum field theories on fuzzy manifolds using noncommutative geometry. Basing ourselves on previous treatments of instantons and chiral fermions (without fermion doubling) on fuzzy spaces and especially fuzzy spheres, we present discrete representations of theta -terms and topological susceptibility for gauge theories and derive axial anomaly on the fuzzy sphere. Our gauge field action for four dimensions is bounded by a constant times the modulus of the instanton number as in the continuum.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 40 条
[1]   Monopoles and solitons in fuzzy physics [J].
Baez, S ;
Balachandran, AP ;
Vaidya, S ;
Ydri, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :787-798
[2]  
BAEZ S, HEPTH9811169
[3]  
Balachandran A. P., 1991, CLASSICAL TOPOLOGY Q
[4]   The fermion doubling problem and noncommutative geometry [J].
Balachandran, AP ;
Govindarajan, TR ;
Ydri, B .
MODERN PHYSICS LETTERS A, 2000, 15 (19) :1279-1286
[5]   NON-ABELIAN MONOPOLES BREAK COLOR .2. FIELD-THEORY AND QUANTUM-MECHANICS [J].
BALACHANDRAN, AP ;
MARMO, G ;
MUKUNDA, N ;
NILSSON, JS ;
SUDARSHAN, ECG ;
ZACCARIA, F .
PHYSICAL REVIEW D, 1984, 29 (12) :2936-2943
[6]  
BALACHANDRAN AP, HEPTH9911087
[7]  
BALACHANDRAN AP, HEPTH0007030
[8]  
BALACHANDRAN AP, 1983, LECT NOTES PHYSICS, V188
[9]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[10]   Chirality and dirac operator on noncommutative sphere [J].
CarowWatamura, U ;
Watamura, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (02) :365-382