The fermion doubling problem and noncommutative geometry

被引:100
作者
Balachandran, AP [1 ]
Govindarajan, TR
Ydri, B
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
D O I
10.1142/S0217732300001389
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a resolution for the fermion doubling problem in discrete field theories based on the fuzzy sphere and its Cartesian products. Its relation to the Ginsparg-Wilson approach is also clarified.
引用
收藏
页码:1279 / 1286
页数:8
相关论文
共 23 条
[1]   Monopoles and solitons in fuzzy physics [J].
Baez, S ;
Balachandran, AP ;
Vaidya, S ;
Ydri, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :787-798
[2]  
BALACHANDRAN AP, SU4240712
[3]  
BALACHANDRAN AP, SU4210701
[4]   Chirality and dirac operator on noncommutative sphere [J].
CarowWatamura, U ;
Watamura, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (02) :365-382
[5]  
CAROWWATAMURA U, HEPTH9801195
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]  
Coquereaux R., 1989, Journal of Geometry and Physics, V6, P425, DOI 10.1016/0393-0440(89)90013-2
[8]   Supersymmetric quantum theory and non-commutative geometry [J].
Fröhlich, J ;
Grandjean, O ;
Recknagel, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :119-184
[9]   A REMNANT OF CHIRAL SYMMETRY ON THE LATTICE [J].
GINSPARG, PH ;
WILSON, KG .
PHYSICAL REVIEW D, 1982, 25 (10) :2649-2657
[10]   Noncommutative geometry and the regularization problem of 4D quantum field theory [J].
Grosse, H ;
Strohmaier, A .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (02) :163-179