Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054

被引:93
作者
Rudolf, Andreas [1 ,2 ]
Baudel, Henrique [3 ,4 ]
Zacchi, Guido [1 ]
Hahn-Hagerdal, Biirbel [3 ]
Liden, Gunnar [1 ]
机构
[1] Lund Univ, Dept Chem Engn, SE-22100 Lund, Sweden
[2] Tech Univ Denmark, Biosyst Dept, Riso Natl Lab, DK-4000 Roskilde, Denmark
[3] Lund Univ, Dept Appl Microbiol, SE-22100 Lund, Sweden
[4] HM Baudel Consulting, BR-54440290 Pernambuco, Brazil
关键词
SSF; sugar cane bagasse; xylose fermentation; Saccharomyces TMB3400; Pichia stipitis CBS6054; strain comparison;
D O I
10.1002/bit.21636
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sugarcane bagasse-a residue from sugar and ethanol production from sugar cane-is a potential raw material for lignocellulosic ethanol production. This material is high in xylan content. A prerequisite for bioethanol production from bagasse is therefore that xylose is efficiently fermented to ethanol, In the current study, ethanolic fermentation of steam-pretreated sugarcane bagasse was assessed in a simultaneous saccharification and fermentation (SSF) set-up using Saccharomyces cerevisiae TMB3400 a recombinant xylose utilizing yeast strain, or Pichia stipitis CBS6054, a naturally xylose utilizing yeast strain. Commercial cellulolytic enzymes were used and the content of water insoluble solids (WIS) was 5% or 7.5%. S. cerevisiae TMB3400 consumed all glucose and large fraction of the xylose in SSF. Almost complete xylose conversion could be achieved at 5% WIS and 32 degrees C. Fermentation did not occur with P. stipitis CBS6054 at pH 5.0. However, at pH 6.0, complete glucose conversion and high xylose conversion (> 70%) was obtained. Microaeration was required for P. stipitis CBS6054. This was not necessary for S. cerevisiae TMB3400.
引用
收藏
页码:783 / 790
页数:8
相关论文
共 40 条
[1]   Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce [J].
Alkasrawi, M ;
Rudolf, A ;
Lidén, G ;
Zacchi, G .
ENZYME AND MICROBIAL TECHNOLOGY, 2006, 38 (1-2) :279-286
[2]  
[Anonymous], 2002, APPL ENVIRON MICROB, DOI DOI 10.1128/AEM.68.5.2095-2100.2002
[3]   Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11 [J].
Asghari, A ;
Bothast, RJ ;
Doran, JB ;
Ingram, LO .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1996, 16 (01) :42-47
[4]   MAXIMUM PRODUCTION IN A BAKERS-YEAST FED-BATCH CULTURE BY A TUBING METHOD [J].
DAIRAKU, K ;
YAMASAKI, Y ;
KUKI, K ;
SHIOYA, S ;
TAKAMATSU, T .
BIOTECHNOLOGY AND BIOENGINEERING, 1981, 23 (09) :2069-2081
[5]   SACCHARIFICATION AND FERMENTATION OF SUGAR-CANE BAGASSE BY KLEBSIELLA-OXYTOCA P2 CONTAINING CHROMOSOMALLY INTEGRATED GENES ENCODING THE ZYMOMONAS-MOBILIS ETHANOL PATHWAY [J].
DORAN, JB ;
ALDRICH, HC ;
INGRAM, LO .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (02) :240-247
[6]   TEMPERATURE PROFILES OF GROWTH AND ETHANOL TOLERANCE OF THE XYLOSE-FERMENTING YEASTS CANDIDA-SHEHATAE AND PICHIA-STIPITIS [J].
DUPREEZ, JC ;
BOSCH, M ;
PRIOR, BA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1987, 25 (06) :521-525
[7]   THE FERMENTATION OF HEXOSE AND PENTOSE SUGARS BY CANDIDA-SHEHATAE AND PICHIA-STIPITIS [J].
DUPREEZ, JC ;
BOSCH, M ;
PRIOR, BA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1986, 23 (3-4) :228-233
[8]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386
[9]   Ethanol learning curve - the Brazilian experience [J].
Goldemberg, J ;
Coelho, ST ;
Nastari, PM ;
Lucon, O .
BIOMASS & BIOENERGY, 2004, 26 (03) :301-304
[10]   PRETREATMENT OF SUGAR-CANE BAGASSE HEMICELLULOSE HYDROLYZATE FOR ETHANOL-PRODUCTION BY YEAST [J].
GONG, CS ;
CHEN, CS ;
CHEN, LF .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1993, 39 :83-88