OpenMS-An open-source software framework for mass spectrometry

被引:475
作者
Sturm, Marc [1 ]
Bertsch, Andreas [1 ]
Groepl, Clemens [2 ]
Hildebrandt, Andreas [4 ]
Hussong, Rene [4 ]
Lange, Eva [2 ]
Pfeifer, Nico [1 ]
Schulz-Trieglaff, Ole [2 ]
Zerck, Alexandra [3 ]
Reinert, Knut [2 ]
Kohlbacher, Oliver [1 ]
机构
[1] Univ Tubingen, Ctr Bioinformat, D-72076 Tubingen, Germany
[2] Free Univ Berlin, D-14195 Berlin, Germany
[3] Max Planck Inst Mol Genet, D-14195 Berlin, Germany
[4] Univ Saarland, Ctr Bioinformat, D-66041 Saarbrucken, Germany
关键词
D O I
10.1186/1471-2105-9-163
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mass spectrometry is an essential analytical technique for high-throughput analysis in proteomics and metabolomics. The development of new separation techniques, precise mass analyzers and experimental protocols is a very active field of research. This leads to more complex experimental setups yielding ever increasing amounts of data. Consequently, analysis of the data is currently often the bottleneck for experimental studies. Although software tools for many data analysis tasks are available today, they are often hard to combine with each other or not flexible enough to allow for rapid prototyping of a new analysis workflow. Results: We present OpenMS, a software framework for rapid application development in mass spectrometry. OpenMS has been designed to be portable, easy-to-use and robust while offering a rich functionality ranging from basic data structures to sophisticated algorithms for data analysis. This has already been demonstrated in several studies. Conclusion: OpenMS is available under the Lesser GNU Public License (LGPL) from the project website at http://www.openms.de.
引用
收藏
页数:11
相关论文
共 39 条
[21]   Absolute myoglobin quantitation in serum by combining two-dimensional liquid chromatography-electrospray ionization mass spectrometry and novel data analysis algorithms [J].
Mayr, BM ;
Kohlbacher, O ;
Reinert, K ;
Sturm, M ;
Gröpl, C ;
Lange, E ;
Klein, C ;
Huber, CG .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (02) :414-421
[22]   VIPER: an advanced software package to support high-throughput LC-MS peptide identification [J].
Monroe, Matthew E. ;
Tolic, Nikola ;
Jaitly, Navdeep ;
Shaw, Jason L. ;
Adkins, Joshua N. ;
Smith, Richard D. .
BIOINFORMATICS, 2007, 23 (15) :2021-2023
[23]   SuperHirn -: a novel tool for high resolution LC-MS-based peptide/protein profiling [J].
Mueller, Lukas N. ;
Rinner, Oliver ;
Schmidt, Alexander ;
Letarte, Simon ;
Bodenmiller, Bernd ;
Brusniak, Mi-Youn ;
Vitek, Olga ;
Aebersold, Ruedi ;
Mueller, Markus .
PROTEOMICS, 2007, 7 (19) :3470-3480
[24]  
Orchard Sandra, 2006, Proteomics, V6, P738, DOI 10.1002/pmic.200500868
[25]   A common open representation of mass spectrometry data and its application to proteomics research [J].
Pedrioli, PGA ;
Eng, JK ;
Hubley, R ;
Vogelzang, M ;
Deutsch, EW ;
Raught, B ;
Pratt, B ;
Nilsson, E ;
Angeletti, RH ;
Apweiler, R ;
Cheung, K ;
Costello, CE ;
Hermjakob, H ;
Huang, S ;
Julian, RK ;
Kapp, E ;
McComb, ME ;
Oliver, SG ;
Omenn, G ;
Paton, NW ;
Simpson, R ;
Smith, R ;
Taylor, CF ;
Zhu, WM ;
Aebersold, R .
NATURE BIOTECHNOLOGY, 2004, 22 (11) :1459-1466
[26]  
Perkins DN, 1999, ELECTROPHORESIS, V20, P3551, DOI 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO
[27]  
2-2
[28]   Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics [J].
Pfeifer, Nico ;
Leinenbach, Andreas ;
Huber, Christian G. ;
Kohlbacher, Oliver .
BMC BIOINFORMATICS, 2007, 8 (1)
[29]  
Press W.H., 2002, NUMERICAL RECIPES C, V2nd ed
[30]  
REINERT K, 2006, COMPUTATIONAL PROTEO